

Identifying Root Causes of Low Performance Ratings Among Mathematics Faculty: A Case Study

Ellenita G. Manalaysay*, Jeffhraim Balilla, Ma. Concepcion DC. Arellano College of Science, Bulacan State University, City of Malolos, Bulacan, Philippines

*Corresponding Author Email: ellenita.manalaysay@bulsu.edu.ph

Date received: June 7, 2025 Originality: 99%
Date revised: July 7, 2025 Grammarly Score: 99%

Date accepted: July 28, 2025 Similarity: 1%

Recommended citation:

Manalaysay, E., Balilla, J., & Arellano, M.C. (2025). Identifying root causes of low performance ratings among mathematics faculty: A case study. *Journal of Interdisciplinary Perspectives*, *3*(8), 874–884. https://doi.org/10.69569/jip.2025.496

Abstract. This study examines the root causes of consistently low Individual Performance Commitment and Review (IPCR) ratings among the mathematics faculty of a Philippine state university. Grounded in the Strategic Human Resource Management (SHRM) framework and Goal-Setting Theory, the research employed an explanatory case study design to explore faculty perceptions through three focus group discussions (FGDs) involving 22 instructors and professors. Data were analyzed using the 5 Whys technique and causal factor charting, identifying five primary issues: unattainable performance standards, inadequate understanding of the IPCR system, excessive workload, low research self-efficacy, and limited access to training and extension opportunities. These findings reveal structural and perceptual barriers to faculty performance, with implications for institutional policy, faculty development, and the refinement of performance appraisal systems. Institutions can foster a more effective and motivated academic workforce by aligning performance expectations with realistic goals and enhancing capacity-building initiatives.

Keywords: Faculty commitment; Faculty development; Performance commitment; Performance evaluation; Root cause analysis.

1.0 Introduction

The realization of any academic institution's vision and mission depends significantly on the performance of its faculty members. The performance of each one should contribute to achieving the institution's goals. Their efficient and practical involvement in the university will undoubtedly lead to noteworthy accomplishments. Universities worldwide rely on robust evaluation processes to ensure that faculty members fulfill their responsibilities in teaching, research, and community engagement. Practical performance evaluation not only enhances institutional accountability but also promotes professional growth, job satisfaction, and organizational alignment (DeNisi & Murphy, 2017; Berman et al., 2019). Regular evaluation of their performance could motivate them to improve their work. Evaluation results could serve as a reference for administrators to identify faculty needs and plan programs that support faculty members in achieving better performance. Performance assessment or performance appraisal is another term for this kind of evaluation. According to the case study conducted by Islam and Rasad (2006), an effective appraisal system should be closely monitored and feedback obtained continuously. Advani and Jalees (2019) believed that the rating system of performance appraisal must be authentic and unbiased, as it leads to employee retention and retains the best talent in the organization. Their study found that performance appraisals have a positive impact on employee retention when practiced

regularly and effectively.

In countries like the United Kingdom and Australia, performance management in universities has evolved to emphasize evidence-based outcomes and strategic alignment. For instance, Marginson and Considine (2000) documented how Australian universities integrated performance indicators to drive institutional competitiveness. Similarly, Singapore's Ministry of Education employs performance-based funding and appraisal systems to encourage research productivity and teaching quality in public universities (Tan & Lim, 2022). These practices reflect a growing global shift toward performance cultures that demand measurable results while fostering academic autonomy. In the Philippines, the Civil Service Commission (CSC) mandates that public offices evaluate each employee's performance based on the commitments made at the start of the rating period and provide premiums for primary outputs that contribute to achieving the organizational mission and vision. The use of the Strategic Performance Management System (SPMS) in each government office is necessary for assessing employees' performance. Under the SPMS, each government employee has their own Individual Performance Commitment and Review (IPCR), which aligns their specific outputs with institutional goals and national development plans (CSC MC No. 6, s. 2012). This is a performance contract between the employee and the agency, outlining targeted outputs for the specific rating period that are identified and agreed upon, along with the performance standards that serve as the basis for evaluating each output. This system regularly monitors and evaluates employee performance for two reasons: 1) aligning employees' work performance with the goals and objectives of the agency, and 2) providing appropriate steps to keep a program or project on track. While conceptually sound, the implementation of SPMS in Philippine SUCs has encountered challenges. These include ambiguity in evaluation standards, limited resources, and disparities in faculty workload distribution (Torneo & Mojica, 2020).

It was observed that the faculty members who are the subjects of this study seldom receive at least satisfactory ratings on their IPCR. Hence, this study aimed to identify the key factors influencing faculty performance ratings by examining the issues affecting their performance. The study's results will benefit both the faculty and the university administration. The study identified the elements influencing the teacher's performance rating, and essential areas for improving their work performance were identified through reflection on the study's findings. The result led to recommendations for actions that would help the instructor improve their performance rating. In addition, the administrators could use the study's results as a basis for designing programs geared toward improving employees' commitment and performance, which will lead to better work outputs and promote the attainment of institutional goals.

An employee's performance impacts their productivity, which can affect the organization's vision achievement. An efficient employee management system must include an employee performance appraisal. In the comprehensive research conducted by Gulzar et al. (2019), it was found that one factor that has a positive impact on employees' retention, if practiced effectively, is the employee's performance appraisal. This observation is also supported by the results of a study conducted by Lansbury (1988), which showed that an effective management process should involve an employee performance appraisal with a genuine "two-way" approach between employees and their organization, in which the needs of both parties are satisfied. In the book by Cardy and Dobbins (1994), it is suggested that one aspect of an effective management system that serves as a tool for employee motivation and management is the performance appraisal. Kim and Holzer (2016) found in their study that the developmental use of employee performance appraisals, employee participation, the quality of the relationship employees have with their supervisors, and employee perceived empowerment are positively associated with employee acceptance of performance appraisals. According to the study conducted by Dechev (2010), an effective employee's performance appraisal is positively correlated with the employee's satisfaction level and work engagement.

Implementing an effective performance appraisal poses several challenges. Walters (1995) outlined the main performance appraisal challenges during the appraisal process, including the determination of evaluation criteria, the evaluators' lack of competence, rating and evaluation errors, and employee resistance due to fear of negative ratings. Human Resource Managers should ensure that employees are aware of the appropriate evaluation criteria. Hence, these criteria should be feasible and measurable. A comprehensive orientation of employees on these evaluation criteria could help develop motivation in employees to reach the organization's

targets. However, errors in employee ratings may lead to demotivation, hindering employees' willingness to perform and contribute to achieving the organization's targets. Objectivity and fairness must always be exercised during evaluations.

According to Dilawari (2013), employee satisfaction with performance appraisal depends on the transparent and bias-free implementation of the system, leading to an increase in the organization's output. The study suggested that a comprehensive orientation of the evaluation system should be implemented so that the employees will know what to do. Employees' positive perception of the appraisal system will have a positive impact on their work environment, while a negative perception will lead to problems that affect their performance.

Factors affecting employee performance ratings do not only concentrate on the effective system of performance appraisal, but also on the personal capacity of the employee to perform. This performance might be affected by various factors that employees are dealing with, which could be personal or workplace-related. Using the SmartTask, a powerful tool to manage and track a team's progress, the eight (8) factors affecting employee performance consist of (1) poor cross-team communication, (2) clarity of accountability; (3) goal orientation; (4) workload imbalance; (5) role- ability fit; (6) lack of transparency; (7) uninspiring leadership and (8) culture fit.

It was revealed in the research conducted by Soleman and Aminah (2011), that employee performance is immensely affected by their workload, where the latter is influenced by external physical factors, such as work environment, complexity of the work, and the level of difficulty of the work and by the internal factors emerging from the body of the employee itself. This factor is called the "strain," which is caused by both somatic and psychological factors. Somatic factors include age, body, and health condition, while psychological factors encompass motivation, perception, trust, satisfaction, and more.

Based on the study conducted by Situmurang and Hidayat (2019), there is a significant relationship between external workload and employee performance, suggesting that companies should consider workloads that are neither too difficult nor too easy for employees, allowing them to avoid feeling overwhelmed. It was also recommended that the company should pay attention to improving services that affect external workload factors, such as conducting training, providing adequate facilities, and awarding honors and recognition for the work done to develop motivation. It has been observed that many faculty members in a specific college or state university situated in the Philippines have gained unsatisfactory performance ratings over the past several years. When not adequately addressed, their low individual performance commitment ratings could affect their self-efficacy and motivation, including the organizational outcomes of the university, which is one of the metrics used by the national government for fund allocation. This study aimed to determine the factors influencing faculty performance ratings and recommend corrective actions to address the identified issues.

Despite extensive policy backing, two critical research gaps persist in the academic literature. First, while numerous studies have examined the mechanics and outcomes of faculty appraisal systems (Kim & Holzer, 2016; Cardy & Dobbins, 1994), few explore the root causes of consistently poor performance ratings through a qualitative and diagnostic lens. Second, much of the available literature is focused on high-income countries, with limited empirical studies from developing nations and resource-constrained higher education systems (Mbaleka, 2015; Roman, 2021). This has left a gap in understanding how institutional culture, workload expectations, and self-efficacy interact in such contexts.

To address these issues, this study integrates two theoretical perspectives: the Strategic Human Resource Management (SHRM) framework (Adrias, 2022), which emphasizes alignment between human resource initiatives and institutional strategies, and Goal-Setting Theory (Locke & Latham, 2002), which highlights the motivational impact of specific, attainable, and feedback-rich objectives. Together, these theories provide a coherent lens for examining how institutional performance systems shape and are shaped by faculty behavior and capabilities. Specifically, this study examines the consistently low IPCR ratings among mathematics faculty at a state university in the Philippines. Using an explanatory case study design, the research explores faculty experiences and perceptions through focus group discussions. It applies the 5 Whys technique and causal factor charting to trace the underlying causes of performance shortfalls. The findings aim to inform institutional reforms in appraisal design, workload management, and faculty development, contributing locally and to the broader international discourse on equitable and effective faculty performance systems.

2.0 Methodology

2.1 Research Design

This explanatory case study is appropriate for gaining an in-depth understanding of complex human behavior in a real-life context, specifically, faculty perceptions and experiences surrounding low IPCR ratings. The case study was conducted within a single state university in the Philippines and involved a purposive sample of 22 mathematics instructors and professors. These participants were divided into three focus group discussions (FGDs) based on rank: (1) instructors and assistant professors, (2) associate professors, and (3) full professors. The exploratory nature of the research favors depth over breadth, providing significant insight into individual issues and institutional procedures, even while the small and confined sample restricts the generalizability of findings.

2.2 Data Gathering Procedure

The study followed the model proposed by Rooney and Vanden Heuvel (2004). The primary data were gathered through three online FGDs, where participants shared insights on the causes of their low IPCR performance. The 5 Whys technique was employed as a structured questioning method to probe deeper into each cited cause of low-performance ratings. This iterative questioning strategy enabled the researchers to trace surface-level issues to more systemic or cognitive root causes. As the inquiry progressed, causal factor charting provided the researchers with a framework for organizing and analyzing the data collected during the FGD. It also allowed them to spot any knowledge gaps. To determine the underlying cause of each causal factor, a root cause analysis was conducted until the causal factors had been identified. Finally, recommendations were crafted to prevent a recurrence of the low rating.

2.3 Data Analysis Procedure

Data were analyzed using inductive thematic analysis, based on the guidelines of Braun and Clarke (2006). After initial familiarization with the transcripts, open coding was conducted to identify recurring words, phrases, and ideas. Codes were then clustered into broader themes using a causal factor charting method adapted from Rooney and Vanden Heuvel's (2004) model. This method enabled the mapping of interconnected causal aspects, illustrating how different institutional and individual factors combine to create the observed performance inequalities. To enhance the credibility of the findings, the researchers conducted peer debriefing after each analysis phase. Reflective memos and analytic notes were maintained to ensure transparency in theme development. Although member checking was not conducted due to time constraints, care was taken to present participant statements accurately and in context.

2.4 Ethical Considerations

Before data collection, participants were informed of the study's objectives, their rights as participants, and the voluntary nature of their involvement. Informed consent was secured, assuring anonymity and confidentiality in all reporting of findings. The study complied with the ethical guidelines for qualitative inquiry set by the Philippine Social Science Council.

3.0 Results and Discussion

This section presents and interprets the five root causes of the mathematics faculty's low IPCR ratings as identified through focus group discussions. The findings are structured by theme, followed by interpretive analysis that integrates disciplinary context and broader theoretical implications. The researchers identified several key factors contributing to the low IPCR ratings of the mathematics faculty: unattainable performance standards, a lack of understanding in completing the IPCR form, heavy faculty workload, inadequate perceptual capability, and insufficient relevant research and extension training and opportunities.

3.1 Unattainable Performance Standard

Participants consistently cited the unrealistic expectations embedded in the Individual Performance Commitment and Review (IPCR) instrument, particularly in the development of instructional materials (IM), research output, and extension activities. A recurring concern was the requirement to develop at least three new instructional materials per semester, complete research projects, present these at conferences, and publish in refereed journals. These performance standards were widely perceived as disconnected from the actual time and

resources available to faculty members. While the parameters and indicators outlined in the approved IPCR form are designed to contribute meaningfully to institutional outcomes, participants noted that meeting all indicators within a single semester is highly improbable. The expectations, while aspirational, are often impractical, given the faculty's existing teaching load, administrative duties, and other institutional responsibilities.

One primary expectation under the instructional domain is the development of instructional materials on a semester basis. Research supports the value of such materials in enhancing teaching effectiveness and student outcomes. According to Igiri and Effiong (2015), instructional materials can enhance learning speed, increase student engagement, improve retention, and foster a meaningful and lasting understanding. Similarly, Kapur (2019) emphasized that developing effective educational materials requires research, innovation, alignment with curricular goals, and careful consideration of student levels and subject matter—demands that require substantial time and expertise.

However, in the current IPCR framework, faculty must submit at least three instructional materials per semester to receive a satisfactory rating. This is a particularly burdensome requirement, as developing even one high-quality instructional material is a time-intensive process. Adding this to other academic and administrative workloads makes the goal largely unattainable within a semester.

One participant illustrated this challenge:

"The indicator requires IM development. Therefore, if I develop and have one approved this semester, I will need to create a new one and get it approved again next semester. There will come a time when I have no output for that indicator because the material for that subject has already been created."

Another faculty member added:

"If we are given the same preparation every year, how can we develop new instructional material? It is not practical to develop one for a course that I will not be handling. However, it will also be more difficult if we are given more teaching preparations every semester and then develop learning material for each course."

These accounts highlight the misalignment between performance indicators and instructional realities, particularly in content-intensive disciplines such as mathematics. As Ball, Thames, and Phelps (2008) noted, material development in mathematics is especially demanding due to the abstract nature of content and the need for well-designed visual and symbolic representations. Effective instructional materials require content-specific pedagogical knowledge and iterative refinement (Shulman, 1986), which is not feasible within the short timeframes imposed by current evaluation cycles. Similarly, the expectations in the research domain fail to accommodate disciplinary differences and academic research timelines. In fields like pure mathematics, projects often span multiple semesters or even years due to the complex nature of theoretical work and the extended peer review process (McNulty & Ross, 2016). However, the IPCR mandates that within a single year, a faculty member must complete a research project, present it at a forum, and publish it in a refereed journal—a highly demanding and often unrealistic expectation.

As one participant explained:

"It takes time to proceed with a study. The suggested timeline provided by the administration only considered the tasks and responsibilities of the faculty. They did not consider that it takes time for a research reviewer to send their feedback and approve a research proposal."

This report reveals that institutional plans for research outputs often overlook external procedures, including ethics approval, peer review, and journal acceptance. Since the latter two performance indicators — presentation and publication — depend on the completion of a research project, this rigid timeline creates a cascading challenge that hinders faculty from fulfilling their research-related KPIs. In the extension domain, expectations were similarly criticized. While CHED defines extension as the transfer of knowledge and technology through

programs that improve livelihoods and community wellbeing, the performance indicators used in the university were perceived as mismatched with the nature of actual extension work. Faculty from mathematics departments, whose expertise lies in content literacy and numeracy, often conduct community training in foundational math skills—a valuable but less tangible form of extension. However, the IPCR indicators focus heavily on outcomes such as technology transfer and commercialization, which are less relevant and attainable in disciplines like mathematics education. Moreover, faculty were expected to implement high-impact extension projects, disseminate scientific knowledge, and contribute to technology adoption—tasks often requiring multidisciplinary collaboration, external funding, and institutional support. One of the indicators also assesses the number of technologies adopted and commercialized, which does not solely depend on the performance of individual faculty but significantly influences their evaluation scores.

For support functions, similar inequities emerged. Participation in university- or college-wide quality assurance activities, curricular development, or professional organization initiatives was also measured. However, many faculty members pointed out that opportunities for leadership roles or committee assignments are limited and often reserved for those holding administrative designations. Consequently, regular faculty with no official post often have fewer avenues to earn high-performance ratings in these areas. This broader issue reflects findings from the global literature, which caution against the adverse effects of "metric-driven" appraisal cultures in academia. Studies by Blackmore and Kandiko (2011) and Deem (2001) highlight how unrealistic and rigid performance metrics can lead to anxiety, reduced job satisfaction, and practices that prioritize meeting metrics over achieving meaningful outcomes. Without differentiated performance indicators that consider the diversity of academic disciplines and the genuine timelines required for quality outputs, institutions risk undermining faculty motivation and academic work integrity.

3.2 Lack of Understanding in Accomplishing the IPCR

The focus group discussions (FGDs) revealed a lack of clarity among faculty members in interpreting and completing the Individual Performance Commitment and Review (IPCR) form. Participants consistently expressed uncertainty regarding the documentation required to support their performance ratings. Several faculty members also questioned whether specific performance indicators could be marked as "Not Applicable" (N/A), suggesting confusion over the rigidity of the IPCR template and the extent to which targets can be tailored to individual needs. During the FGD, commonly raised questions included:

"Are PowerPoint presentations and lecture notes included as instructional materials?"

These inquiries highlight systemic problems in implementation and communication, not just information deficiencies. The recurring uncertainties suggest that faculty members are unclear about which activities correspond to the recommended indicators and which documents serve as proof for parameters. This confusion risks inaccurate performance ratings, as evaluators may be left to interpret vague evidence against ambiguous standards. According to Mackenzie, Wehner, and Correll (2019), unclear performance metrics lead to lower evaluation accuracy and reduced employee trust in the appraisal process. In educational settings, this problem is exacerbated by what they term "underrating bias," where competent employees may fail to meet evaluation standards not due to poor performance, but rather due to insufficient procedural knowledge about documentation and indicator alignment. Without clear, contextual guidelines, even highly productive faculty may be evaluated unfairly.

Beyond documentation issues, participants also raised concerns about the rigid structure of the IPCR itself, particularly regarding the setting of individual performance targets. Faculty members inquired whether some parameters could be excluded or modified, asking:

```
"Can the IPCR target be reduced?"
```

These questions highlight a tension between the theoretical flexibility of the IPCR as a self-set commitment tool

[&]quot;What is included in the teaching portfolio?"

[&]quot;Can this include seminar attendance as a member of a professional organization?"

[&]quot;Can a parameter be marked as N/A?"

and its actual implementation as a top-down, standardized system. While the Civil Service Commission (CSC) Memorandum Circular No. 6, s. 2012 emphasizes that the IPCR should reflect the commitment agreed upon between the employee and their supervisor at the start of the rating period. In practice, universities often impose pre-set standards for faculty performance, leaving little room for negotiation or contextualization. Faculty are held accountable to uniform metrics that may not reflect their teaching load, subject specialization, or institutional roles. This lack of flexibility and clarity signals two primary issues: inadequate training on using the IPCR instrument and poor alignment between the tool and academic work contexts. Although standardization aims to guarantee uniformity and objectivity, it also overlooks the variety of faculty roles, particularly in subjects such as mathematics or the arts, where results may diverge significantly from those in other areas.

Dechev (2010) and Dilawari (2013) argue that performance management systems should function as compliance checklists and tools for professional growth and development. When a performance system is perceived as harsh or overly prescriptive, it may deter staff and undermine accurate record-keeping. However, open and honest methods can empower employees by making expectations clear and coordinating individual efforts with organizational objectives.

3.3 Heavy Faculty Workload

Participants in the study consistently described a highly demanding workload, encompassing extensive teaching responsibilities, administrative duties, and institutional reporting requirements. A regular faculty workload included 18 hours of classroom teaching, 7 hours of instructional-related tasks (such as preparing materials and assessments), consultation hours, research and extension work, along with additional obligations such as monthly accomplishment reports, ISO documentation, and program accreditation activities. For many mathematics instructors, instructional-related tasks—such as preparing slide presentations, developing instructional materials, designing and grading assessments, and computing grades—occupied a significant portion of their time. Based on the institutional workload distribution, faculty were also expected to allocate 3 hours for student consultation, 6 hours for research, and 6 hours for extension services each week. However, these allocations often proved unrealistic due to overlapping demands. In many cases, faculty were also assigned up to 12 excess teaching hours and frequently tasked with non-teaching roles, such as preparing documentation for ISO audits and program accreditation, contributing to flexible learning compliance, or serving in co-curricular committees.

As one respondent noted:

"The time allotted for research, as indicated in the approved workload, was used to check test papers because we have a large class size and checking test papers is time-consuming, especially if we are checking the mathematical proofs."

This remark captures a common scenario: core instructional tasks, particularly in mathematics, consume time allocated for research and extension functions, resulting in compromised performance in those areas. Checking and grading mathematical proofs, as well as evaluating open-ended solutions, are cognitively demanding tasks that require close attention and precision. These activities cannot be rushed or automated without sacrificing rigor. Since many faculty handle six to fifteen classes, each with 30 to 60 students, the allocated seven hours for instructional-related activities is insufficient.

Furthermore, the support functions expected of faculty—particularly those related to quality assurance—are uncredited in the official workload yet require substantial time and effort. Faculty are routinely assigned to working committees for accreditation and ISO preparation. These tasks involve studying evaluation instruments, planning activities, gathering and analyzing relevant documents, preparing reports, and ensuring compliance with standards.

As one professor explained:

"One of the hardest things faculty do is the preparation for accreditation. We are the ones doing all the preparation and documentation."

This sentiment reflects a broader pattern of "invisible labor" – uncompensated work that, while essential to institutional functioning, often goes unrecognized in formal evaluations (O'Meara, 2016). Faculty members frequently work beyond official hours to complete these obligations, further eroding the time available for research and extension outputs. The transition to flexible and remote learning during the COVID-19 pandemic added another layer of responsibility. Faculty were required to submit monthly accomplishment reports detailing their online class activities, including video call links, screenshots of online sessions, and documentation of class tasks.

A respondent commented:

"We still submit monthly accomplishment reports for flexible learning. The program chair or department head could enter our Google Classroom or MS Teams to monitor our activities."

This response underscores faculty recognition of the importance of instructional monitoring, while also suggesting alternative, less burdensome methods that could support transparency without adding to faculty fatigue. Faculty with administrative designations faced additional challenges. Although some teaching load was reduced, these individuals were still expected to perform strategic planning, policy implementation, and organizational leadership, in addition to their core responsibilities of teaching, research, and extension.

One FGD participant in an administrative role noted:

"Administrative functions and support services may affect our research productivity. There is too much work."

This reveals a critical misalignment: while administrative tasks are vital to institutional performance, they often divert attention and energy from academic functions, such as research publication and community engagement. Moreover, the simultaneous and overlapping nature of task assignments, with multiple deliverables due within the same timeframe, creates an unsustainable working environment.

These findings align with concerns expressed in the literature. Gul et al. (2021) observed that excessive faculty workloads hinder effective time management and reduce research output, particularly when administrative expectations are compounded by teaching assignments. Kinman and Wray (2018) further emphasized the risk of burnout in STEM fields, where cognitive demands are high and lesson planning requires complex conceptualization. In mathematics education, the challenge is particularly acute, as instruction demands frequent adaptation of examples, symbolic reasoning, and differentiated assessments. Institutionally, the assignment of accreditation work and compliance monitoring—without clear workload credits—reflects a broader pattern of underrecognized labor. O'Meara (2016) notes that such "academic housework" disproportionately burdens teaching-focused faculty, and often goes unrewarded in performance evaluations such as the IPCR. This results in a cycle where teachers are held accountable for outputs in instruction, research, and extension, without institutional mechanisms that realistically support fulfilling all these demands.

3.4 Perceptional Capability

Many respondents cited a lack of conceptual knowledge and technical skills required for academic work as reasons for their low confidence in their research abilities. Their drive to conduct research is hindered by this perceived deficiency, which also lowers their overall productivity.

As one participant explained:

"Not everyone is into research... maybe if someone could guide me in doing research... I know I am not into research, but if I can work with someone who can guide or mentor me, at least I will learn and improve." Another echoed a similar sentiment: "Not everyone can do research, so it is better if, in a group, there is someone skilled in research who can teach members like me who are not good at it."

These reflections reveal a consistent pattern of low research self-efficacy—a belief that one is unable to complete research-related tasks. Faculty who hold such beliefs often doubt their capacity to identify researchable

problems, choose suitable methodologies, or follow appropriate procedures, resulting in hesitation and dependence on external validation. As Bandura (1997) emphasizes, self-efficacy is a key predictor of motivation, persistence, and performance. When individuals lack this belief, even well-intentioned institutional support mechanisms may fall short in fostering research productivity.

According to Abun et al. (2021), low self-efficacy has a negative influence on work engagement, job satisfaction, and overall performance. Faculty members who are unsure of their research competence tend to disengage from scholarly activities, avoid submitting proposals, and shy away from collaborative opportunities. Roman (2021) also found that such perceptions often persist even when training and funding are available, primarily because confidence precedes action in the development of research capacity. These challenges are greater in the teaching of mathematics. New researchers may find research design especially intimidating due to the discipline's abstract and highly theoretical character. It is often difficult for even experienced educators to formulate methodologically sound and pedagogically relevant questions or subjects, as noted by García et al. (2020). Without mentoring or collaborative environments, faculty may internalize these difficulties as personal shortcomings rather than skill gaps that can be addressed through support and development.

3.5 Inadequate Relevant Research, Extension Training, and Opportunities

The institution offers various research capability-building activities, such as seminars and training sessions, aimed at equipping faculty with essential skills in the research process, from problem identification and topic selection to literature review, methodological design, analysis, report writing, and publication. However, despite these initiatives, faculty reported that such interventions did not significantly enhance their research competencies or outputs.

Two key reasons emerged for the perceived ineffectiveness of these efforts.

First, faculty reported that their intense workload prevents them from fully engaging in these activities. While most training was delivered online, instructors often had to multitask during sessions, dividing their attention between learning and their immediate responsibilities—such as lesson planning, grading, responding to student inquiries, submitting reports, and preparing documents for accreditation. As a result, faculty members were unable to reflect on or apply new knowledge in a meaningful way. This fragmented engagement undermines the development of self-efficacy and confidence in conducting research. As one professor shared during the focus group, the cumulative effect of these responsibilities leaves little cognitive and emotional bandwidth for research, learning, or output.

Second, many teachers expressed a lack of motivation to attend research workshops and webinars, citing fatigue, insecurity, or a preference for sticking to traditional teaching methods. This reluctance may also reflect the still-maturing research culture within the university context. Khalique et al. (2019) highlight that faculty tend to prioritize immediate teaching responsibilities over longer-term scholarly engagement in environments where research is not yet deeply embedded in institutional identity. Similarly, Mbaleka (2015) identified fear of rejection, lack of training, and insufficient institutional support as significant barriers to research productivity and publication among faculty in higher education. Beyond research, extension services presented similar challenges. Faculty participants noted that active engagement in community extension was rare. When it occurred, it was primarily associated with the university's annual flagship initiative, Sambalaran—a camp-based extension project. Outside of this, few faculty had organized or participated in sustained, independent extension activities. Several respondents explained that they lacked the time and institutional linkages needed to initiate meaningful projects. In many cases, the absence of formal partnerships with external organizations further limited opportunities for outreach.

These findings indicate that offering training alone is insufficient. According to Blume et al. (2010), for training to be practical, it must be timely, participatory, and embedded in structured follow-through mechanisms. Learning transfer remains low when seminars are delivered without consideration for faculty workload or subsequent mentoring and accountability structures. Passive attendance does not translate into competence or productivity. Moreover, the lack of intrinsic motivation for both research and extension reflects a broader disconnect between institutional expectations and faculty identity. Vangrieken et al. (2015) emphasize that

professional engagement improves when support is relational—through mentoring, collaboration, and shared inquiry—rather than merely procedural. Faculty are more likely to engage in research and extension when they feel ownership over their work, when they can collaboratively design projects, and when institutional support is visible, ongoing, and personalized.

3.6 Recommendations

In light of the identified root causes of the mathematics instructors' and professors' low IPCR rating, the following were recommended to address the issues that would potentially improve their performance:

1. Review and revision of the IPCR instrument. The Strategic Performance Management System (SPMS) is intended to align employee performance with institutional goals and outcomes. The institution should carefully assess the current IPCR instrument to identify gaps or areas of misalignment, thereby facilitating alignment. Standards for assessing faculty outputs must also be reviewed to ensure they accurately represent the varied responsibilities and practical abilities of academic staff. Standards used for evaluating faculty outputs must also be revisited to ensure they accurately reflect the realistic capacities and diverse responsibilities of academic staff.

Although technically possible, Torneo and Monica (2020) claim that restrictive structures and mismatched incentives frequently hinder the implementation of SPMS. They recommend revising the system to support intrinsic motivation and continuous improvement while minimizing unintended negative consequences. Accordingly, the Performance Management Team (PMT) should adopt flexible, discipline-sensitive indicators and set specific, attainable, and measurable standards that can reasonably be achieved within the rating period.

- 2. Conduct of IPCR orientation to the faculty. The study found that the provisions in the IPCR instrument are not clear to the faculty. Therefore, the PMT should conduct regular orientations before each evaluation cycle. These sessions should communicate the principles, objectives, processes, and implications of the IPCR and the broader SPMS. In addition, clear implementing rules and guidelines must be crafted and disseminated to ensure that faculty are well-informed and empowered to meet performance expectations.
- 3. Design and implement interventions that could help the faculty perform their workload. To help faculty manage their complex workload, the institution should develop and implement targeted intervention programs. These may include capacity-building initiatives on time management, instructional material development, assessment of learning, collaboration, and faculty mentoring.

Time management is particularly essential given the multifaceted roles faculty play beyond teaching (Rani, Tahir, & Batool, 2021). Tasks such as developing learning materials and checking student outputs consume a significant amount of time; thus, institutional solutions—such as shared resource banks, automated grading tools, or peer-developed content—should be explored to reduce this burden.

Additionally, the institution should promote collaboration and create opportunities for joint initiatives to improve faculty productivity in research and extension services. Collaborative work enhances professional development, technological competence, and awareness of research-based practices (Vangrieken et al., 2015).

Alongside collaboration, structured research mentoring and training programs are recommended to increase research self-efficacy and scholarly output. Roman (2021) notes that greater commitment and success are the outcomes of having confidence in one's capacity to undertake research. Similarly, Khalique and Singh (2019) emphasize that people's level of self-efficacy has a critical impact on how they respond to situations. Therefore, initiatives that foster self-belief in research capability and extension work can directly support faculty performance and contribute to the institution's strategic goals.

4.0 Conclusion

The findings of this study highlight significant implications for institutional policy and faculty development in higher education. The identified root causes—unattainable performance standards, unclear IPCR expectations, excessive workload, low research self-efficacy, and insufficient training and extension opportunities—reveal a significant mismatch between institutional goals and the lived experiences of academic staff. When analyzed

through the lenses of Strategic Human Resource Management and Goal-Setting Theory, these gaps highlight the urgent disagreements that demonstrate the pressing need for context-sensitive evaluation methods that consider faculty development requirements, reasonable deadlines, and disciplinary standards. This necessitates readjusting workloads to account for invisible work, creating collaborative structures that improve research and community engagement, providing focused orientation and mentoring programs, and redesigning performance instruments to reflect actual faculty roles—all of which are vital for higher education institutions, especially those with limited resources. These implications call for a systemic rethinking of how performance is defined, supported, and recognized, moving from compliance-driven metrics toward capacity-building strategies that enable faculty to thrive.

5.0 Contributions of Authors

Author 1: conceptualization, data gathering, data analysis, Writing, Review, Editing

Author 2: conceptualization, data gathering

Author 3: data gathering, writing original draft

6.0 Funding

This research received no specific grant or financial support from any funding agency in the public, commercial, or not-for-profit sectors.

7.0 Conflict of Interests

The authors state no conflict of interest.

8.0 Acknowledgment

The researchers gratefully acknowledge the support of Bulacan State University in conducting this study.

9.0 References

- Abun, D., Magallanes, T., Nicolas, M. T., Apollo, E. P., & Encarnacion, M. J. (2021). The work environment mediates employees' self-efficacy and work performance. International Journal of Research in Business & Social Science, 10(7), 1–15. https://doi.org/10.20525/ijrbs.v10i7.1470
- Adrias, A. F. C. (2022). Strategic human resource management framework for state universities and colleges in the Philippines. International Journal of Scientific Research and Management, 10(4), 3303-3311. https://doi.org/10.18535/ijsrm/v10i4.6
- Advani, A., & Jalees, T. (2017). Impact of performance appraisal on employee retention: A study on the banking sector of Pakistan. Journal of Independent Studies and Research -Management, Social Sciences and Economics, 15(1), 21-38. https://tinyurl.com/y4pixvms

- Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman. https://doi.org/10.1891/0889-8391.13.2.158

 Dilawari, P. K. (2013). A study to assess awareness and perceptions of employees towards the performance appraisal system in a corporate super-specialty hospital in Amritsar. International Journal of Science and Research (IJSR), 2319-7064. https://www.ijsr.net/archive/v
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
- Berman, E. M., Bowman, J. S., West, J. P., & Van Wart, M. R. (2019). Human resource management in public service: Paradoxes, processes, and problems (6th ed.). CQ Press.Blackmore, P., & Kandiko, C. B. (2011). Motivation in academic life: A prestige economy. SRHE.
- Blackmore, P., & Kandiko, C. B. (2011). Motivation in academic life: A prestige economy. Research in Post-Compulsory Education, 16(4), 399-411.
- https://doi.org/10.1080/13596748.2011.626971 Blume, B. D., Ford, J. K., Baldwin, T. T., & Huang, J. L. (2010). Transfer of training: A meta-analytic review. Journal of Management, 36(4), 1065-1105.
- https://doi.org/10.1177/0149206309352880
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp0630a Daniyal, M., & Khan, M. (2020). The role of HRM practices in retaining employees: Evidence from the banking sector. Journal of Management Info, 7(4), 232–247. https://doi.org/10.31580/jmi.v7i4.1654
- Cardy, R. L., & Dobbins, G. H. (1994). Performance appraisal: Alternative perspectives. Cincinnati, OH: South-Western Publishing Company.
- Dechev, Z. (2010). Effective Performance Appraisal a study into the relation between employer satisfaction and optimizing business results. Master's Thesis, Erasmus University
- Deem, R. (2001). Globalisation, new managerialism, academic capitalism and entrepreneurialism in universities: Is the local dimension still important? Comparative Education, 37(1), 7-20.
- DeNisi, A. S., & Murphy, K. R. (2017). Performance appraisal and performance management: 100 years of progress? Journal of Applied Psychology, 102(3), 421-433.
- https://doi.org/10.1037/apl0000085Ga Escribano, A., & Sánchez, J. (2020). Barriers to conducting research in mathematics education: A review of teacher perspectives. International Journal of Educational Research Open, 1, 100011. https://doi.org/10.1016/j.ijedro.2020.100011
- Dilawari, S. (2013). Performance management: A practical guide. New Delhi, India: ABC Publishers.
- García, J., Escribano, A., & Sánchez, J. (2020). Barriers to conducting research in mathematics education: A review of teacher perspectives. International Journal of Educational Research Open, 1, 100011. https://doi.org/j.ijedro.2020.100011
- Gul, R., Tahir, T., & Batool, T. (2021). Impact of teachers' workload on their time management skills at the university level. Indian Journal of Economics and Business, 20, 819–829. https://tinyurl.com/4snrr
- Gulzar, S., Advani, A., & Jalees, T. (2019). Impact of performance appraisal on employee retention: A study on the banking sector of Pakistan. JISR-Management and Social Sciences & Economics (JISR-MSSE), 15(1), 85-101. https://doi.org/10.31384/jisrmsse/2017.15.1.6
- Igiri, C. E., & Effiong, O. E. (2015). Impact of instructional materials in teaching and learning of biology in senior secondary schools in Yakurr LGA. International Letters of Social and Humanistic Sciences, 62, 27-33. https://doi.org/10.18052/www.scipress.com/ILSHS.6
- Islam, R., & Rasad, S. (2006). Employee performance evaluation by the AHP: A case study. Asia Pacific Management Review, 11(3), 167-173. https://doi.org/10.6126/APMR.2006.11.3.04 Kapur, R. (2019). Development of teaching-learning materials. https://tinyurl.com/ypkkawbf
- Khalique, S., & Singh, M. K. (2019). Role of self-efficacy in improving performance. International Journal of Research & Technology, 7(12), 1-5. https://tinyurl.com/y9ayhzev Kim, T., & Holzer, M. (2014). Public employees and performance appraisal: A study of antecedents to employees' perception of the process. Review of Public Personnel Administration, 36(1), 31-56. https://doi.org/10.1177/0734371X14549
- Kinman, G., & Wray, S. (2018). Work-related wellbeing in UK higher education: Risk factors and implications. British Journal of Guidance & Counselling, 46(4), 421-432 https://doi.org/10.1080/03069885.2018.1468004
- Lansbury, R. (1988). Performance management: A process approach. Asia Pacific Journal of Human Resources, 26(2). https://doi.org/10.1177/103841118802600204
- Locke, E. A., & Latham, G. P. (2002). Building a practically functional theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57, 705–717 https://doi.org/10.1037/0003-066X.57.9.705
- Mackenzie, L. N., Wehner, J., & Correll, S. J. (2019). Why most performance evaluations are biased, and how to fix them. Harvard Business Review. https://tinyurl.com/fwurrdxz

- Marginson, S., & Considine, M. (2000). The Enterprise University: Power, Governance and Reinvention in Australia. Cambridge University Press.
- Mbaleka, S. W. (2015). Factors leading to limited faculty publication in Philippine higher education. International Forum, 18(2), 121–141. https://tinyurl.com/yv52cr4a
 O'Meara, K. (2016). Whose problem is it? Gender differences in faculty thinking about campus service. Teachers College Record, 118(8), 1–38. https://doi.org/10.1177/016146811611800808
 Rani, N., Tahir, S., & Batool, S. (2021). Time management and performance of university teachers: A case study. Journal of Education and Educational Development, 8(1), 51–64. https://tinyurl.com/4snrrfc
- Rooney, J. D., & Vanden Heuvel, L. (2004). Root cause analysis for beginners. https://tinyurl.com/ycv5ek9y
- Roman, A. (2021). Research competencies and performance of higher education institutions (HEI) faculty. International Journal of Research Publications, 78, 37-44. https://doi.org/10.47119/IJRP100781620211975
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
 Situmurang, G., & Hidayat, R. (2019). Analysis of the effect of workload on the employee performance of the production operator in the PEM plant PT. Schneider Electric Manufacturing Batam. Advances in Social Science, Education and Humanities Research, 377, 1-6. https://doi.org/10.2991/icaess-19.2019.41
- Situmurang, G., & Hidayat, R. (2019). Analysis of the effect of workload on the employee performance of the production operator in the Pem Plant PT. Schneider Electric Manufacturing Batam. Advances in Social Science, Education and Humanities Research, 377, 220-226. https://doi.org/10.2991/ICAESS-19.2019.41
- Soleman, & Aminah. (2011). Analisis beban kerja ditinjau dari faktor usia dengan pendekatan recommended weith limit (studi kasus mahasiswa UNPATTI Poka). Jurnal Arika, 5(2). https://tinyurl.com/4kzvtp3b
- Tan, J., & Lim, M. (2022). Performance management and academic careers in Singapore: Shifting emphases and challenges. Asian Education and Development Studies, 11(3), 463–478. https://doi.org/10.1108/AEDS-08-2021-0181
- Torneo, A. R., & Mojica, B. J. (2020). The strategic performance management system in selected Philippine national agencies: Assessment and policy recommendations. Asian Politics & Policy. https://doi.org/10.1111/aspp.12540
- Vangrieken, K., Dochy, F., Raes, E., & Kyndt, E. (2015). Teacher collaboration: A systematic review. Educational Research Review, 15, 17–40. https://doi.org/10.1016/j.edurev.2015.04.002
 Vangrieken, K., Meredith, C., Packer, T., & Kyndt, E. (2015). Teacher communities as a context for professional development: A systematic review. Teaching and Teacher Education, 61, 47–59. https://doi.org/10.1016/j.tate.2016.10.001
- Walters, M. (1995). The performance management handbook (Developing practice). Chartered Institute of Personnel and Development.