
ISSN Print: 2984-8288, ISSN Online: 2984-8385 
Vol. 4 No. 3, pp. 132-151, March 2026 

   

 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC  4.0). 

 
 
 
 
 
Original Article 
 

The Anatomy of Uncertain Terrains: Soil Topography 
Characterization and Discharge Analysis of the Baroro 
River Basin, Northern Philippines 
 
Jericho A. Trio , Patricia Mae M. Clariño , Chris C. Guevarra  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

he Baroro River Basin, situated in the montane environs of Northern Luzon, is a critical hydrological feature 
spanning approximately 19,432.50 hectares across six municipalities in La Union: San Gabriel, Bagulin, San 
Juan, Bacnotan, Santol, and San Fernando City (Lahoti et al., 2025). Topographically characterized by a 

dendritic structure and acute tributaries, the watershed drains from the foothills of the Cordillera Administrative 
Region (CAR) into the West Philippine Sea (Ramirez et al., 2019). While this system supports vital ecosystem 
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Abstract. The Baroro River Basin in Northern Luzon is a critical hydrological 
feature providing irrigation and biodiversity services. However, the watershed 
faces severe vulnerabilities due to the interplay between high-discharge 
hydrological behaviors and anthropogenic pressures, specifically rapid Land 
Use and Land Cover (LULC) changes that fragment forest blocks and 
compromise soil stability. While socio-ecological baselines and local 
perceptions of degradation are well documented, there remains a lack of 
integrated quantitative modeling of the pedological and lotic processes on 
which human settlements depend. Existing studies do not adequately account 
for the physical feedback loops among soil properties, river discharge, and 
landscape fragmentation. This study used the Soil and Water Assessment Tool+ 
(SWAT+) in QGIS to simulate hydro-pedological trajectories from 1963 to 2063. 
The methodology integrated remote sensing with descriptive statistics to 
correlate variables such as Topographic Wetness Index (TWI), Soil Bulk Density 
(BD), and Soil Water Potential (SWP) against historical rainfall data. The 
analysis revealed the San Juan Anomaly, a 2–3 km zone of amplified TWI and 
sediment accumulation acting as a vital hydrological capacitor for riverine 
agriculture. Statistical modeling showed a decoupling between precipitation 
and discharge, with high upstream porosity (BD ≈ 0.69 g/cm³) buffering storm 
runoff. However, a sharp divergence exists between the simulated restorative 
potential forest recovery and the observed reality of downstream urban 
compaction and soil densification. The basin demands a management paradigm 
that treats it as a single functional unit. Immediate policy interventions must 
zone the San Juan alluvial scar for sustainable agriculture to prevent 
infrastructure encroachment. Long-term strategies should prioritize deep 
pedological rehabilitation through upstream reforestation to reduce bulk 
density, thereby restoring carbon storage and flood-mitigation capacity. 
 
Keywords: Baroro River Basin; River pedology; River remote sensing; Soil taxonomy; 
Topographic wetness. 
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services, its physical configuration presents inherent vulnerabilities. The watershed experiences an average annual 
surface runoff of 2,426.63 mm, with significant peaks during typhoon seasons (Cruz et al., 2014). Consequently, 
the interplay between this high-discharge hydrological behavior and increasing land-use pressures creates a 
compelling need for a rigorous soil–water assessment to mitigate agricultural vulnerability and hydrological risks. 
 
In terms of its ecosystem services, the Baroro River Basin is a vital resource for irrigation, domestic water supply, 
and biodiversity. However, anthropogenic pressures primarily driven by rapid land use and land cover (LULC) 
changes have placed the river basin within the margins of vulnerability (Almarines et al., 2024; Pulhin et al., 2024; 
Ramirez et al., 2022). The river system, in terms of its biodiversity and ecosystem integrity, has declined and 
become gravely fragmented by episodes of urban sprawl (Ramirez et al., 2019). The trajectory of the basin's 
degradation is rooted in historical shifts in land use. Early assessments by Ramirez et al. (2019) identified 
significant alterations to the watershed's landscape, characterized by the conversion of forest land to agricultural 
and built-up areas. These changes have led to severe forest fragmentation, compromising the watershed's 
hydrological functions and increasing susceptibility to hazards such as flooding and soil erosion. The 
fragmentation of continuous forest blocks into smaller, isolated patches has disrupted wildlife habitats and 
reduced the basin's capacity to regulate water flow effectively (Ramirez et al., 2022). 
 
Building on these physical assessments, Ramirez et al. (2019) and Ramirez et al. (2022) emphasized the human 
dimension of these environmental changes. Their research demonstrates that local communities are keenly aware 
of the deterioration of ecosystem services. Using the "livelihood, income, forest condition, and ecosystem services" 
(LIFE) framework, these studies found that residents' perceptions closely align with scientific data on forest loss 
and water scarcity. Local knowledge confirms that the decline in forest cover has directly affected the availability 
of provisioning services, such as freshwater and raw materials, thereby threatening local livelihoods that depend 
on these natural resources. 
 
The ecological consequences extend beyond the immediate loss of resources to broader climate implications. 
Pulhin et al. (2024) quantified the impact of LULC changes on the basin's carbon storage capacity. The study 
revealed a marked decline in carbon sequestration due to the reduction of forest cover for urban and agricultural 
expansion. Unlike other watersheds that may benefit economically from such conversions, the Baroro River Basin 
has incurred economic costs from these land-cover changes, underscoring the urgent need for site-specific 
management strategies to recover its carbon-stock potential (Pulhin et al., 2024). Furthermore, the dynamics 
between food production and ecosystem health present a critical challenge. Almarines et al. (2024) explored the 
trade-offs between bioproduction systems and habitat quality. While the basin remains relatively stable in terms 
of habitat quality compared to other watersheds, there is a discernible decline in food production, particularly in 
rice and corn yields. This suggests that current land management practices may be failing to balance the competing 
demands of food security and biodiversity conservation. The study highlights trade-offs and potential synergies, 
advocating spatial planning that integrates bioproduction with the maintenance of ecosystem services.  
 
To manage these complex interactions, watershed thinking has emerged as a vital paradigm, advocating for 
boundary-crossing measures that treat the river basin as a single functional unit. This approach integrates 
biophysical dimensions to enhance watershed literacy and awareness of water cycles (Sammel & McMartin, 2014). 
However, operationalizing this holistic philosophy requires advanced spatial–temporal tools. Remote sensing and 
Geographic Information Systems (GIS) have become indispensable for translating watershed theory into practice, 
providing a lens for understanding river morphology, streamflow, and landscape discontinuities (Umar et al., 
2018). In the context of changing land use, these technologies are essential for predicting erosion, nutrient runoff, 
and flooding susceptibility (Issac & Newell, 2025). Despite the availability of these technologies, current literature 
on the Baroro River Basin remains heavily skewed toward socio-ecological perspectives. Existing scholarship has 
documented habitat fragmentation, agroecosystems, and local perceptions of ecosystem services, revealing that 
resident observations align with historical land-use shifts (Almarines et al., 2024; Pulhin et al., 2024; Ramirez et 
al., 2019; Ramirez et al., 2022). However, a critical research gap exists: while the anthropocentric and socio-
ecological baselines are well established, there is no integrated quantitative modeling approach for the pedological 
and lotic (flowing water) behaviors on which these human settlements depend. The existing body of work does 
not sufficiently account for the physical feedback loops between soil properties and river discharge under varying 
climatic conditions. 
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The primary justification for a soil assessment is the alarming rates of land-cover change observed in the 
watershed. Research indicates that the basin has undergone significant landscape fragmentation, with continuous 
forest blocks converted into agricultural land and built-up areas (Ramirez et al., 2022). This transition removes the 
protective vegetative cover that stabilizes soil, making the terrain highly susceptible to erosion. Without a detailed 
soil assessment, it is impossible to identify high-risk erosion zones or accurately quantify sediment yield. 
Understanding soil stability is crucial because excessive sedimentation can silt up river channels, reduce the 
carrying capacity of waterways, and exacerbate flood risks for downstream communities (Ramirez et al., 2019). 
Furthermore, assessing soil health is vital for agricultural planning, as declining soil fertility directly affects the 
livelihoods of farmers who depend on the basin for crop production (Ramirez et al., 2022). A water assessment is 
indispensable to monitor the hydrological response to these landscape changes. The alteration of the basin’s 
vegetative cover disrupts the natural water cycle, potentially leading to lower aquifer recharge rates and reduced 
streamflow during dry periods (Almarines et al., 2024). Understanding the basin's water quantity dynamics is 
essential for climate resilience. As climate change alters precipitation patterns, baseline data on streamflow and 
water retention are required to model future scenarios and develop infrastructure that can withstand extreme 
weather events (Pulhin et al., 2024). A scientific assessment of soil and water provides the empirical evidence 
needed to validate these local perceptions and inform policy. It enables decision-makers to move beyond reactive 
measures and implement integrated watershed management strategies that balance economic development with 
ecological preservation. 
 
This study aims to bridge this gap by prioritizing the hydro-meteorological and pedo-topographic determinants 
of river basin integrity. As Lal (2015) argues, the feasibility of agricultural production is strictly governed by soil 
physical properties; forcing high-water-demand crops into poorly drained soils leads to systemic waterlogging 
and degradation. Similarly, the river's lotic behavior serves as a non-negotiable blueprint for built environments. 
Ignoring natural drainage patterns and river physics during construction significantly amplifies the risk of 
hydrological disasters (Wohl, 2014). This research introduces a methodological approach for the Baroro River 
Basin by linking Soil and Water Assessment Tool+ (SWAT+) simulations with remote sensing–derived 
pedological indicators. The findings aim to contribute significantly to interdisciplinary environmental decision-
making, offering a predictive framework that ensures agricultural and urban developments operate within the 
safe physical boundaries of the river system. 
 

Methodology  
Study Site 
The Baroro River Basin lies between latitudes 16°36'59'' N to 16°44'7'' N and longitudes around 120°20' E. 
Elevations range dramatically from sea level at the coastal outlet to 1,415 meters above sea level in the upstream 
headwaters near Barangay Lon-oy in San Gabriel. Climatically, the region falls under Type I in the Modified 
Coronas Classification, with a pronounced dry season from November to April and a wet season dominated by 
the southwest monsoon (Lahoti et al., 2025). Annual precipitation averages 2,277 mm, concentrated in the wet 
months with peaks >  700 mm in August (Cruz et al., 2014). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The Baroro River Basin, La Union, Northern Philippines  

(Map created via QGIS projected at EPSG 32651; watershed delineation via SWAT+.) 
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Research Design  
A hydrological research design integrates both descriptive and simulation-based methodologies to model 
complex watershed processes effectively. In the context of the Soil and Water Assessment Tool (SWAT+) in QGIS, 
the research design typically begins with a descriptive phase. This stage focuses on accurately characterizing the 
study area's physical reality by aggregating spatial datasets, such as Digital Elevation Models (DEMs), land-use 
maps, and soil properties. The integration of QGIS with SWAT+ streamlines this workflow, allowing researchers 
to precisely describe catchment features and define Hydrological Response Units (HRUs) based on observed 
environmental variables. In this phase, descriptive statistics such as frequency distribution tables, measures of 
central tendency, and measures of dispersion are considered (Chawanda et al., 2020). By coupling these designs, 
researchers can validate the model against the historical data described, providing predictive insights for 
watershed management.  
 
Data Sources 
 

Table 1. Roster of QGIS Tools and Plugins Considered in the Conduct of the Output 

Geographical 
Data 

Format Resolution Year 
Availability 

Data Source 

Baroro 
Watershed 
Digital 
Elevation 
Model 

Raster 
(.tiff) 

30 meters 2025 Copernicus (Extracted from CodeStudio - Google Earth Engine) 

Baroro 
Watershed 
Land  
Cover Map 

Raster 
(.tiff), 
Vector 
(.shp) 

30 meters 2020 www.gadm.org  
www.geoportal.gov.ph  

Soil Water 
Potential 
(in kPa) 

Raster 
(.tiff); 
Extracted 
Vector 
(.shp) via 
Google 
Earth 
Engine 

250 meters 2018 https://developers.google.com/earth-
engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-
33KPA_USDA-4B1C_M_v01  

Soil Bulk 
Density 
(in g/cm³) 

Raster 
(.tiff); 
Extracted 
Vector 
(.shp) via 
Google 
Earth 
Engine 

250 meters 2018 https://developers.google.com/earth-
engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-
FINEEARTH_USDA-4A1H_M_v02  

Soil 
Taxonomy 
(USDA) 

Raster 
(.tiff); 
Extracted 
(.shp) 
 via 
Google 
Earth 
Engine 

250 meters 2018 https://developers.google.com/earth-
engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-
SOILTAX_C_v01  

Precipitation 
Data 

Text File — January 
1963 – 

October 
2025 

Philippine Weather Stations  

 
 
 
 

 

http://www.gadm.org/
http://www.geoportal.gov.ph/
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-SOILTAX_C_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-SOILTAX_C_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-SOILTAX_C_v01
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Figure 2. Pedological Features Data Sources Extracted from Google Earth Engine 

 
Statistical and Remote Sensing Software 
QGIS  
QGIS (Quantum Geographic Information System) provides an open platform for geospatial analysis of watersheds 
and for river remote sensing. The authors of this study recognized that each QGIS version offers a distinct set of 
tools for conducting geographical surveys and assessments; therefore, three versions were considered: QGIS 
3.36.3, QGIS 3.40.8, and QGIS 3.44.2. The following tools were placed into the utility and their corresponding 
objectives for accomplishing this research endeavor:   
 

Table 2. Roster of QGIS Tools and Plugins Considered in the Conduct of the Output 

Plugins and Tools  Objective QGIS 3.36.3 QGIS 3.40.8 QGIS 3.44.2 

Clipper  Clipping function in a similar shapefile 
through polygon line selection as a clipping 
feature. 

   

MapTiler Base maps using OpenStreetMap data by 
vector tiles served from MapTiler Cloud. 

   

QSWAT 2.0.3 For soil and water assessment.    

QSWAT+ For soil and water assessment.    

SAGA-Next Gen Fill Sinks 
Tool (Wang and Liu)  

Ascertains a continuous downward slope 
for hydrological analysis. 

   

SAGA-Terrain Analysis For capturing the topographic wetness 
index.  

   

             Legend: Presence of tool/ plug-in. 

 
RStudio 4.5.1 and JASP 0.18.3 
For statistical analysis and descriptive summaries, the proponents of this study used RStudio 4.5.1 and JASP 0.18.3. 
RStudio plugins in use were ggplot2 for graphical representation, Sim.DiffProc for Geometric Brownian Motion,  
and hydroGOF for diagnostic checks of the SWAT model. For the feasibility of descriptive summary statistics, 
JASP 0.18.3 was placed into utility– this included quick analysis for measures of spread and measures of central 
tendency.  
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Terrain and Hydrological Metrics  
Soil Bulk Density  
According to Arkhangelskaya and Lukyashchenko (2018), soil bulk density (BD) is a critical physical parameter 
calculated as the mass of dry soil divided by its total volume, accounting for both solid particles and pore spaces. 
BD is widely utilized to evaluate the structural integrity and compaction levels of soil. An increase in bulk density 
typically indicates reduced porosity, which reduces hydraulic conductivity and hampers root development, 
thereby increasing surface runoff. In contrast, lower bulk density values suggest ample pore space, creating an 
environment conducive to water retention. 
 
Soil Water Potential  
Soil water potential (SWP) refers to the energy status of soil moisture in comparison to a standard reservoir of 
pure water. As noted by Hillel (2003), this energy differential is the primary force governing the velocity and 
direction of hydraulic movement, with water naturally migrating from high-potential zones (wet) toward low-
potential zones (dry). Understanding SWP is essential for accurately modeling evapotranspiration rates and 
assessing water accessibility for plant uptake. 
 
Topographic Wetness Index  
The Topographic Wetness Index (TWI) is a spatial analysis metric used to determine how terrain features influence 
hydrological distribution. By utilizing DEMs in platforms such as SAGA or QGIS, researchers can estimate soil 
moisture patterns and identify areas prone to saturation and runoff. Established by Beven and Kirkby (1979), the 
TWI model operates under the assumption of steady-state conditions, positing that the local hydraulic gradient is 
approximately equal to the terrain slope. 
 
Watershed Delineation  
The HRU definition utilized for the watershed delineation in this study employed a multiple-threshold approach 
to optimize the balance between spatial detail and computational efficiency. According to the theoretical 
documentation of the Soil and Water Assessment Tool (SWAT), HRUs represent unique combinations of land use, 
soil characteristics, and slope classes that dictate the hydrological behavior of the subbasin (Shawul et al., 2013). 
To avoid excessive model complexity caused by negligible spatial units, this study adopted a hierarchical filtration 
method consistent with established modeling protocols (Lee et al., 2021; Park et al., 2019). 
 
The delineation process applied a strict percentage-based elimination sequence. Initially, a 10% threshold was 
established for land use coverage: any specific land use category occupying less than 10% of the subwatershed 
area was deemed hydrologically insignificant and subsequently removed, with its area reallocated proportionally 
among the remaining dominant land use types to preserve the total subwatershed area. Following this, a 
secondary 20% threshold was applied to the soil layer. Within the remaining land use classes, any soil taxon 
covering less than 20% of the area was eliminated and redistributed among the prevailing soil groups. Finally, a 
10% threshold was imposed on slope classes (Aloui et al., 2023).  
 
This ensured that minor topographic variations did not cause the basin to fragment into unmanageable micro-
units. By ignoring these minor spatial components, the model reduces the total number of HRUs to a manageable 
number while maintaining the watershed's macroscopic physical properties necessary for accurate streamflow 
simulation (Raghuwanshi et al., 2006). This "lumping" technique allows the simulation to account for spatial 
heterogeneity without the computational burden of mapping every minor landscape feature one-to-one (Setegn 
et al., 2008). 
Geometric Brownian Motion  
 
To address the inherent uncertainty and temporal variability of landscape evolution over a century-scale timeline, 
this study utilized Geometric Brownian Motion (GBM) to simulate long-term trajectories for pedo-topographic 
metrics. While these parameters are often treated as static in short-term modeling, a hundred-year simulation 
requires accounting for stochastic fluctuations driven by environmental stressors, land cover changes, and climatic 
anomalies. GBM, a continuous-time stochastic process, is particularly suitable for these natural variables because 
it ensures that the simulated values remain strictly positive, a physical requirement for soil and topographic 
properties, while capturing the random drift and shock inherent in natural systems (Allen, 2007). The simulation 
posits that the value of a pedo-topographic metric X at time t evolves according to a stochastic differential equation 
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(SDE). This approach assumes that the percentage change in the metric is independent of its current value, 
allowing for exponential growth or decay perturbed by random noise. 
 
                                                                𝑑𝑋! 	= 	𝜇𝑋!𝑑𝑡	 + 	𝜎𝑋!𝑑𝑊!                           (1) 
Where: 
 𝑥! represent the pedo-topographic metric at time t 
 𝜇 is the drift coefficient, representing the expected deterministic trend  

𝜎 is the volatility coefficient, representing the magnitude of environmental fluctuations  
𝑑𝑊! is the increment of a Brownian motion representing random noise  

 
Through the implementation of Itô's Lemma (Bressloff, 2024), the following arrangements were pursued to project 
the metrics over the 100 years (1963 – 2063): 
 

𝑋! 	= 	𝑋"	𝑒𝑥𝑝	[(𝜇 −
#!

$
)𝑡	 + 	𝜎𝑊!]                     (2) 

Where: 
             𝑥" represent the initial value at time t 
 
This formula generates multiple realization paths, providing a probabilistic envelope of possible future soil and 
terrain conditions rather than a single deterministic outcome. This stochastic framework aligns with 
methodologies in environmental systems analysis where predictive uncertainty is substantial (Herrera et al., 2022). 
By shocking the initial parameters derived from the descriptive phase, the model robustly tests the resilience of 
the watershed's hydrological response across varying theoretical river-basin scenarios. 
 
Descriptive Analysis 
In soil remote sensing, calculating the central tendency of spectral signatures helps researchers identify the 
dominant properties of land-cover classes, facilitating the accurate delineation of HRUs (Lillesand et al., 2015). 
Without robust estimates of mean values, the calibration of satellite-derived datasets against in situ observations 
would lack a reliable baseline, potentially introducing systematic bias into subsequent hydrological models. 
Equally critical are measures of spread, such as standard deviation and the coefficient of variation, which quantify 
the heterogeneity inherent in natural landscapes. In river basin analysis, the average condition rarely dictates 
extreme events; rather, it is the variance in precipitation and flow data that characterizes a watershed's 
vulnerability to flooding or drought (Gutmann et al., 2014). For soil mapping, the standard deviation serves as a 
proxy for spatial uncertainty. A high degree of dispersion within a satellite pixel’s value suggests a mix of soil 
types or vegetation cover (sub-pixel heterogeneity), warning the analyst against treating the area as a uniform 
entity (Crow et al., 2012). By rigorously applying these summary statistics, researchers can distinguish genuine 
environmental signals from random noise, ensuring that the physical reality described in the study is statistically 
valid before stochastic simulations are applied, as in the case of Geometric Brownian Motion. 
 
Bivariate Analysis  
The Pearson correlation coefficient is computed by normalizing the covariance of two quantitative variables by 
their product of standard deviations. This formulation ensures the result is dimensionless, allowing for the 
comparison of relationships between variables with different units. The formula is expressed as: 
 

         𝑟	 = 	
∑"#	%& ('#('	)(+#(+)

,∑"#	%& ('#('	)!,∑"#	%& (+#(+)!
                    (3) 

Where: 
 𝑥- and 𝑦- are the individual sample points from two data sets 
 𝑥 and 𝑦 represent the sample means of the respective data sets  
 n is the sample size  
 
Diagnostic Checks  
Nash-Sutcliffe Efficiency 
The NSE is a normalized metric used to evaluate the predictive power of hydrological models. It operates by 
comparing the variance of the model's errors with that of the observed data. The score ranges from -∞ to 1, where 
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1 indicates a perfect correlation between the model and reality. According to guidelines established by Moriasi et 
al. (2007), a model is generally considered satisfactory if it achieves an NSE score greater than 0.50. The NSE is 
implemented under the following equation:  
 
                                                                    𝑁𝑆𝐸 = 1 −	∑

"
#	%& (.'(),#(.)#+,#)!

∑"#	%& (.'(),#(.'())!
                       (4) 

Where: 
 𝑄/01,- is the observed flow at time step i 
 𝑄1-3,- is the simulated  at time step i 

𝑄/01 is the mean of the observed flow data  
𝑛 is the total number of observations  

 
Kling-Gupta Efficiency  
Rather than relying on a single measure of error, the Kling-Gupta Efficiency (KGE) is a composite index that 
aggregates three distinct components: correlation, bias, and variability. It evaluates performance by measuring 
the geometric distance between the model's output and an optimal benchmark point. This approach provides a 
balanced view of how well the simulation mimics the properties of the observed data. 
                     
                                         𝐾𝐺𝐸	 = 1 −<(𝑟	 − 1)$ +	(𝛼	 − 1)$ + (𝛽 − 1)$             (5) 
Where: 
 r is the Pearson correlation coefficient between observed and simulated data  
 𝛼 is the variability ratio 
 𝛽 is the Bias ratio 
 
Percent Bias  
Percent Bias (PBIAS) assesses the systematic error in a simulation by calculating the average percentage difference 
between modeled results and observed records. This metric specifically highlights the model's tendency to skew 
high or low. A positive PBIAS indicates that the model underestimates values (the observation exceeds the 
simulation). At the same time, a negative PBIAS suggests that the model is overestimating values (the observation 
is less than the simulation). 
 

𝑃𝐵𝐼𝐴𝑆	 = 	∑
"
#	%& (.'(),#(.)#+,#)	∙	5""

∑"#	%& .'(),#
              (6) 

Where: 
 𝑄/01,- is the observed flow at time step i 
 𝑄1-3,- is the simulated at time step i 
 
Theoretical and Estimated Standard Deviation  
Comparing theoretical and estimated standard deviations is a critical validation step that confirms that the 
simulation's realized volatility aligns with the historical input parameters. Specifically, the theoretical standard 
deviation refers to the target volatility parameter (𝜎) initially input into the Geometric Brownian Motion equation, 
whereas the estimated standard deviation is derived from the log-returns of the generated series. For a successful 
model, the output (estimated) volatility should closely mirror the input (theoretical) volatility. 
  

                                                            𝜎61!-37!68 = C 5
9(5

∑9-	:5 (𝑅- − 𝑅)$               (7) 

Where: 
 n is the total number of time steps (100 years) 
 𝑅- is the log-return at time 𝑡- 
 𝑅 is the mean of log returns  
 
Kolmogorov-Smirnov (K-S) Normality Test Statistic  
The Kolmogorov-Smirnov (K-S) normality test utilizes the statistic (D)to measure goodness-of-fit by quantifying 
the maximum distance between the Empirical Cumulative Distribution Function (ECDF) of the simulated log-
returns and the Cumulative Distribution Function (CDF) of a theoretical normal distribution. The p-value 
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determines the significance of this test; a result greater than 0.05 suggests the data does not differ significantly 
from a normal distribution, thereby validating the GBM assumption. 
 

  𝐷	 = 𝑠𝑢𝑝'|	𝐹9(𝑥) − 𝐹(𝑥)|	                  (8) 
Where: 
 D is the Kolmogorov-Smirnov statistic 
 𝑠𝑢𝑝'	 is the supremum (maximum absolute difference)  
 𝐹9(𝑥) is the empirical cumulative distribution function of standardized log returns 
 𝐹(𝑥) is the theoretical cumulative distribution function of the standard normal distribution  
 
Lag-1 Autocorrelation  
The lag-1 autocorrelation metric (𝑟-) measures the linear dependence between a variable's value at time t and its 
value at the previous time step t-1, quantifying the memory or persistence of the soil property. An autocorrelation 
coefficient close to zero suggests the data series behaves like white noise or a random process, indicating no 
substantial linear correlation between sequential data points (Box et al., 2015). 
 

   𝑟- 	= 	
∑"#	%& (;,(;)(;,-&(;)

∑"#	%& (;,(;)!
                  (9) 

Where: 
 𝑋! is the value of the pedo-topographic metric at time t 
 𝑋!<5	 the value of the metric at time t + 1 (the time ahead)  
 𝑋 is the mean of the time series  
 
Data Cleaning  
Prior to integrating spatial and temporal datasets into the SWAT+ environment, a rigorous data-cleaning protocol 
was implemented to ensure hydrological consistency of the Baroro River Basin model. The preprocessing phase 
began with standardizing spatial inputs (DEM, land cover, and soil maps) in QGIS 3.44.2. All raster datasets were 
reprojected to a uniform Coordinate Reference System (CRS) and resampled to ensure pixel alignment, thereby 
preventing geometric errors during watershed delineation. For the historical precipitation data (1963–2023), the 
time series was subjected to diagnostic checks for continuity. Statistical screening of the pedological metrics was 
conducted in RStudio 4.5.1, using boxplots and standardized z-scores to identify and remove outliers that deviated 
significantly from USDA soil taxonomy ranges. The "10/20/10" HRU threshold rule served as a filter, 
systematically eliminating negligible land use and soil fragments to reduce computational noise and enhance the 
model’s computational efficiency without compromising the catchment's descriptive physical reality. 
 
Ethical Considerations and Limitations  
Ethical considerations centered on the responsible use of open-access geospatial data; all secondary datasets, 
including SRTM Digital Elevation Models and USDA soil taxonomies, were rigorously attributed to their 
respective agencies to uphold intellectual property rights and data-use policies. As the research design was purely 
computational and did not involve human subjects, the ethical scope was defined by data fidelity and the honest 
disclosure of methodological constraints. Regarding limitations, the authors acknowledge the inherent 
simplifications imposed by the SWAT+ environment. The application of the "10/20/10" HRU threshold rule, while 
essential for computational efficiency, inevitably aggregates minor land use and soil features, potentially masking 
micro-scale hydrological responses. Furthermore, relying on arithmetic mean imputation to address gaps in the 
historical precipitation record (1963–2023) introduces uncertainty into long-term rainfall-runoff simulations. It is 
critical to recognize that the study's results are based on a computational and simulation-based research design. 
The results should not be construed as dogmatic but rather as possible scenarios for future management of the 
Baroro River Basin.  
 
Results and Discussion 
Watershed Profile  
The SWAT+ delineation of the Baroro Watershed identified a complex drainage network comprising 43 subbasins 
and 417 individual channel segments (reaches). The spatial distribution of these channels exhibits distinct 
heterogeneity (Figure 3). High drainage density is observed in the central-eastern upland zones (approx. 
coordinates 230,000 E, 1,640,000 N), particularly within the Bagulin and San Gabriel subbasins, which encompass 
60% of the total dendritic network. Moving westward to the transitional plains of San Juan, Parian, and Ambaley 



141 

(225,000 E, 1,640,000 N), channel density decreases, accounting for 30% of the network. The remaining 10% of the 
tributaries are concentrated in the downstream reaches near the primary outlet at the estuary between Barangay 
Baroro and Paratong in Bacnotan (222,000 E, 1,640,000 N). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Stream and Channel Distribution within the Baroro River Basin  
 

Stream hierarchy analysis follows the Strahler (1957) classification system, revealing a pyramidal structure 
consistent with Horton’s law of stream numbers. As illustrated in Figure 4, the network is dominated by first-
order headwater streams, which constitute 41.83% of the total channels. Subsequent orders decrease 
geometrically: second-order (29.09%), third-order (17.45%), and fourth-order (8.03%). The fifth-order mainstem, 
the Baroro River, represents only 3.6% of the distinct segments. This distribution reflects a typical bifurcation ratio 
for undisturbed terrains, facilitating efficient hydrological connectivity from headwaters to the coast. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Strahler’s Stream Order Frequency Distribution of the Baroro Watershed  

 
Channel geometry metrics derived from the SWAT+ analysis are summarized in Table 3. Channel segment lengths 
exhibit a positively skewed distribution, with a mean length of 712.50 m, which is significantly higher than the 
median of 586.03 m. This skewness reflects the topographical contrast of the watershed: shorter, steeper tributaries 
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dominate the upstream Cordillera region, while longer channel extents characterize the western lowland 
subbasins. The data show moderate variability (SD = 557.67 m), with most reaches clustering between 15 m and 
1,300 m. The leptokurtic distribution (Kurtosis = 1.49) highlights a strong central tendency, with a pronounced 
elongation in the mainstem reaches. 
 
                                        Table 3. Channel Length of Baroro Watershed Streams and Associated Tributaries (in meters) 

Channel Length (in m)  Frequency Percent (%) 
(5-348.43] 

(348.43-691.87] 
(691.87-1035.3] 

(1035.3-1378.73] 
(1378.73-1722.17] 
(1722.17-2065.6] 
(2065.6-2409.03] 

(2409.03-2752.47] 
(2752.47-3095.9] 

125 
118 
87 
37 
22 
17 
6 
4 
1 

29.98% 
28.30% 
20.86% 
8.87% 
5.28% 
4.08% 
1.44% 
0.96% 
0.24% 

 
Land cover classification in the year 2020 retrieved from GeoPortal denominates the Baroro Watershed into the 
following categories: (i) forest-mixed, (ii) range-grasses, (iii) generic agricultural land, (iv) medium density urban, 
(v) barren land, (vi) water, and (vii) wetlands. QSWAT+ terrain apportionment reveals how the 19,432.50 ha of 
the lotic system is dominated by a forest-mixed landscape (approximately 12,692 ha; 65.30%), followed by 
agricultural land-generic (31.80%; 6,179 ha) and an urban patch (2.60%; 505 ha). Wetlands and range grass 
environments exhibit low cover (0.001-0.05%; 7 ha of the total landscape). Aquatic systems in the area (associated 
with lotic settings of the watershed) cover 170 hectares (0.90% of the total area).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Land Cover of the Baroro River Basin 

 
Pedo-Topographic Characteristics  
 

Table 4. Pedo-Topographic Characteristics of the Baroro River Basin 
Pedo-Topographic Variable             Unit    Mean  Median Standard Deviation Skewness      Kurtosis 
Topographic Wetness Index             —    9.08  8.00 3.23   0.96      0.82 

Soil Bulk Density              g/cm³   1.24  1.25 1.03 -1.59      1.62 
Soil Water Potential               kPa   40.37  40.00 3.27 -1.95      27.84 

 
The TWI of the Baroro River Basin exhibits a positive asymmetry, with a mean of 9.08 exceeding the median of 
8.00. This distribution suggests that while the majority of the watershed (~60–70%) consists of well-drained slopes 
(TWI < 9), the hydrologic character is heavily influenced by clustered zones of saturation potential. The standard 
deviation of 3.23 further confirms that wetness is not uniformly distributed but rather concentrated in specific 
geomorphic features. Spatially, this is manifested as a prominent linear incision on the western flank, a 2-3 km 
wetness scar extending from mid-slopes (300 m elevation) toward the coastal outlets of San Juan (Figure 6-A). 
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Within this feature, TWI values range from 11 to 26, indicating a transition from transport zones to depositional 
basins, likely associated with alluvial fan formation (Reynolds et al., 2025). 
 
The pedological footprint mirrors this hydrological gradient, as evidenced by the inverse relationship between BD 
and elevation. The watershed displays a pronounced leptokurtic distribution for BD (Kurtosis = 1.62), with a 
median (𝑥̃		= 1.25 g/cm³) slightly surpassing the average (𝑥̄ = 1.24 g/cm³). This left-skewness (-1.59) is spatially 
driven by an erosion-deposition mechanism whereby upstream areas within the Cordilleras maintain lower 
densities (0–1.23 g/cm³) due to selective erosion, while downstream basins near the West Philippine Sea exhibit 
significantly higher compaction (1.27–1.49 g/cm³). This downstream densification aligns with the aforementioned 
alluvial scar, where the accumulation of mineralized sediments and fine silts has created a distinct pedological 
zone. Such environments facilitate compaction through aerobic conditioning and mineralization, establishing a 
structural foundation for the agricultural expanses identified in the overlay of Figures 6-A and 6-C. 
 
SWP provides the capacity of soil to hold water. The metric displays exceptional statistical uniformity, 
characterized by extreme leptokurtosis (27.84) and a mean (40.37 kPa) that closely matches the median (40.00 kPa). 
This indicates that the vast majority of the watershed’s 19,432.5 ha maintains moisture levels near field capacity (-
40 kPa), likely buffered by the extensive mixed forest cover (65.3%). However, the negative skewness (-1.95) 
identifies a wetter tail of the distribution that corresponds precisely with the San Juan anomaly. In the vicinity of 
the topographic scar and high-density alluvial fan, SWP values drop to a range of 0–38 kPa. This convergence 
defines the area’s high agroecological value: the alluvial fan acts as a nutrient sink with high BD and TWI, which 
helps the soil retain more water (closer to saturation) than the surrounding slopes. Consequently, the scar 
functions not merely as a drainage feature but also as a hydrologically subsidized storage house for alluvium and 
moisture, which are essential for the persistence of the observed riverine farm plots. 
 
Relative to soil taxonomy, Table 5 depicts the soil taxon distribution in terms of hectare apportionment of the 
Baroro Watershed. It can be observed how Epiaquerts (30%) cover an approximate of 5,829.75 ha, followed by 
Haploxerolls (20%; 3,886.50 ha), and Ferrandals (15%; 2,914.88 ha). The heterogeneous pedological mosaic of 
Baroro implies a watershed with variable hydrologic responses. For instance, Epiaquert dominance in floodplains 
amplifies baseflow and nutrient export during wet seasons but risks erosion through episodes of gilgai microrelief, 
exacerbating sediment loads (De Benedetto et al., 2019). It is critical to recognize how Epiaquerts are a subgroup 
of Vertisols characterized by aquic moisture regimes, typically occurring in landscapes with seasonal water 
saturation (Di Bene et al., 2022). These soils are predominantly clay-rich, with heavy clay textures (often 30–95% 
clay fraction), dominated by smectite minerals that constitute the primary clay component, sometimes exceeding 
30% of the soil and up to 98% in the clay fraction (Ferguson et al., 2020; Kovda et al., 2017). It is important to 
acknowledge how Epiaquerts often exhibit perched water tables, especially in lowlands, resulting in poor 
drainage, superficial saturation, and gleyic horizons during wet seasons (Di Bene et al., 2022).  
 

Table 5. Soil Taxonomic Distribution in the Baroro Watershed 
Soil Taxon Percentage Hectares 
Epiaquerts 

Haploxerolls 
Ferrandalfs 
Fluviosols 

Natraquolls 
Kandiudalfs 
Natrixerolls 
Argixerolls 
Aquands 

Dystropepts 
Vermustalfs 
Glossudalfs 
Hapludox 

No Recorded Taxon 

30 
20 
15 
10 
5 
5 
3 
3 
3 
2 
1 
1 
1 
1 

5,829.75 
3,886.50 
2,914.88 
1,943.25 
971.63 
971.63 
582.98 
582.98 
582.98 
388.65 
194.33 
194.33 
194.33 
194.33 
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Figure 6. Pedo-Topographic Characteristics of the Baroro River Basin:  
6-A (Topographic Wetness Index), 6-B (Soil Water Potential), and 6-C (Soil Bulk Density) 
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Figure 7. Soil Taxonomy of the Baroro River Basin  
 
Soil-and-Hydrological Simulation 
The simulation of the Baroro River Basin reveals a hydro-pedological trajectory characterized by distinct phases 
of stochastic oscillation and abrupt regime shifts. The time series data (1963–2063) elucidates the interplay between 
climatic variability and land surface modifications, highlighting the watershed's sensitivity to both meteorological 
extremes and theoretical land management interventions. The hydrological parameters, specifically rainfall and 
streamflow, exhibited high-frequency and amplitude-based fluctuations consistent with the Type I climate of the 
Ilocos Region (Tolentino et al., 2016).  These oscillations are not uniform; they are punctuated by significant 
perturbations that align with historical meteorological records. Notable spikes in the observed flow and rainfall 
datasets correspond to periods of intensified cyclonic activity known to have devastated Northern Luzon. For 
instance, the dense clustering of peak discharge events observed in the late 2000s and 2010s strongly correlates 
with the onslaught of Typhoon Pepeng in 2009 and Typhoon Ompong in 2018. Such events underscore the basin's 
vulnerability to flash flooding and sediment transport, phenomena projected to persist well into the mid-21st 
century, as indicated by high-amplitude flow events modeled in the 2050s and 2060s (Abancó et al., 2021; Tolentino 
et al., 2016).  
 
A divergence is observed between the observed and simulated flow regimes. While the observed data retain the 
erratic signature of extreme weather events, the simulated flow variable exhibits a dampened, rhythmic cyclicity. 
The persistence of discharge peaks in the latter half of the simulation implies a climate scenario where wet seasons 
intensify, a projection consistent with broader climate change assessments for the Philippine archipelago 
(Sangelantoni et al., 2019; Tolentino et al., 2016). This hydrological volatility necessitates a robust evaluation of the 
watershed's physical capacity to regulate flow, directing attention to the pedological underpinnings of the basin. 
In contrast to the stochastic nature of hydrological variables, pedological parameters exhibit a distinct, monotonic 
regime shift beginning in the early 21st century. Historically, bulk density values ranged between 1.2 and 1.6 
g/cm³, indicative of mineral soils in mixed-use or agricultural landscapes. The simulation reveals a precipitous 
decline in BD, beginning around 2005–2010, that stabilizes at remarkably low values (~0.4 g/cm³) by the 2030s. 
Concurrently, SWP values drop from a historical range of 40–50 kPa to near-saturation levels (~10 kPa). This 
inverse relationship indicates a transition toward highly porous media with enhanced water retention capacities. 
In the context of the Baroro River Basin, where forest fragmentation has historically been documented (Encisa-
Garcia et al., 2020), this trend does not reflect a business-as-usual pattern of urbanization. Urban expansion, 
particularly in downstream municipalities like San Juan, typically results in soil compaction and increased 
imperviousness. Therefore, the modeled reduction in bulk density is interpreted here as a normative restoration 
scenario, simulating the aggressive reversion of compacted agricultural lands to protected forest zones, thereby 
increasing soil organic carbon and porosity (Cruz et al., 2014). 
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The implications of these trends are critical for ecosystem service valuation. The anomaly observed in the TWI, 
specifically the crash to near-zero values in the late 1970s, suggests drastic changes in flow-accumulation paths, 
possibly due to infrastructure interventions. The overarching trend of improved soil structure and moisture 
retention implies a theoretical enhancement of the watershed’s regulating services. By increasing the basin's 
sponge effect, the restored soil profile portrayed in the simulation would theoretically mitigate the flash-flood 
risks associated with the aforementioned typhoons. This highlights the divergence between the current reality of 
urban expansion and the necessary ecological interventions. While rapid land-use changes in San Gabriel and San 
Juan threaten to exacerbate runoff (Ramirez et al., 2019), the simulation provides a quantitative assessment of the 
hydrological benefits achievable through rigorous watershed zoning and reforestation efforts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Combined Hydrological and Pedological Simulation (1963 - 2063)  
 
The statistical characterization of hydro-meteorological variables in the Baroro River Basin revealed a distinct 
decoupling between precipitation inputs and hydrological response. As detailed in Table 6, rainfall events 
exhibited a high average intensity (𝑥̄  = 90.35 mm) with a negative skewness, indicating that while average 
precipitation is substantial, the distribution is weighted towards larger, less frequent storm events. This high-
energy input, however, undergoes significant attenuation as it translates into streamflow. Observed flow (𝑥̄  = 
65.60 m³/s) is notably lower than rainfall inputs, a reduction that becomes even more pronounced in the simulated 
flow values (𝑥̄  = 29.58 m³/s). This damping effect, in which simulated discharge is roughly 45% of observed flow, 
suggests a watershed with high abstraction capacity, with canopy interception and soil infiltration buffering storm 
runoff (Nainar et al., 2021; Nowak & Greenfield, 2018). The observed and simulated flows showed negative 
kurtosis (-3.08 and -2.54, respectively), implying that the watershed’s discharge regime is relatively consistent, 
dominated by baseflow or moderate flow events rather than flashy, extreme peaks. The alignment of negative 
skewness across rainfall (-0.48) and flow (-0.37 observed) further corroborates a system in which extreme low-
flow or dry periods are rare, likely sustained by the region's localized convective rainfall patterns or persistent 
subsurface drainage (Armstrong et al., 2008; Olden & Poff, 2003).  
 

Table 6. Measures of Spread and Central Tendency on Simulated Hydro-Meteorological and Pedo-Topographic Variables 
Variable  Unit Mean  Median Standard Deviation Skewness    Kurtosis 
Rainfall   mm 90.35  136.04 80.54 -0.48    -3.09 
Observed Flow  m³/s 65.60  83.76 58.14 -0.37    -3.08 
Simulated Flow  m³/s 29.58  39.52 25.13 -0.23    -2.54 
Soil Water Potential g/cm³ 13.59  12.34 13.22 0.11    -2.98 
Soil Bulk Density    kPa 0.69  0.81 0.48 0.14    -0.33 
Topographic Wetness Index     —  1.98  0.13 3.47 2.27     8.03 
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The interaction between soil structure and moisture retention offers a physical explanation for the observed flow 
dampening. Soil BD presents an average of (𝑥̄ = 0.69 g/cm³ ), a value significantly lower than that of typical mineral 
soils 1.3–1.5 g/cm³). This low density, combined with the median ( 0.81 g/cm³), points to highly porous, organic-
rich soils typical of forest floors or uncompacted upland slopes. The negative kurtosis (-0.33) suggests a broad, 
uniform spread of density values across the watershed, avoiding concentration around a single mean. 
Hydrologically, this high porosity facilitates rapid infiltration, thereby reducing immediate surface runoff and 
contributing to the observed flow attenuation. Conversely, SWP exhibits a positive skewness and a mean (𝑥̄ = 
13.59 kPa) close to its median (𝑥̃		= 12.34 kPa). These values, near field capacity, indicate that the watershed's soils 
are in a state of persistent energetic equilibrium, rarely drying out completely or remaining fully saturated. This 
consistent moisture availability supports the earlier hypothesis of sustained baseflow. 
 
TWI is the only terrain variable with extreme values for asymmetry (Skewness = 2.27) and leptokurtosis (Kurtosis 
= 8.03). While the median TWI is low (0.13), the high mean (𝑥̄ = 1.98) and standard deviation (SD = 3.47) are driven 
by a long right tail of extreme wetness values. This statistical signature confirms that, while most of the Baroro 
landscape consists of well-drained, steep terrain, there are distinct, spatially concentrated zones of extreme 
saturation, as evidenced by the identified alluvial fans and riparian corridors in previous sections. These high-
TWI hotspots act as critical hydrological capacitors, accumulating runoff from the steep, low-density slopes and 
maintaining the localized saturation necessary for the region's agricultural persistence. 
 
Hydro-Meteorological Correlations and Pedo-Topographic Regimes 
The correlation analysis of the Baroro Watershed’s hydro-meteorological and pedological variables, spanning a 
century-scale simulation (1963–2063b), reveals a system defined by two distinct statistical regimes: a highly 
responsive temporal domain governed by precipitation dynamics, and a rigidly structured spatial domain defined 
by landscape and soil properties. As illustrated in the pairwise relationship matrix and correlation summaries 
(Figure 9), the watershed exhibits strong internal coherence within these groups, while maintaining statistical 
independence between them. The following sections interpret these associations, distinguishing between the fluid 
dynamics of flow generation and the static architecture of the catchment. 
 

Figure 9. Pairwise Pearson Correlation Between Simulated Hydro-Meteorological and Pedo-Topographic Variables 
 

A strong linear relationship between atmospheric inputs and discharge characterizes the hydrological behavior of 
the Baroro Watershed. Rainfall demonstrates a strong, significant positive correlation with Observed Flow (r = 
0.862, p < 0.001) and an even stronger association with Simulated Flow (r = 0.901, p < 0.001). Statistically, such a 
degree of synchronicity suggests a catchment with high hydraulic connectivity, where precipitation inputs are 
rapidly translated into channel runoff rather than being significantly delayed by deep storage or lag times (Jencso 
et al., 2009). The scatter plots for these relationships clearly display this positive trend. This pattern is typical of 
tropical watersheds, where saturation-excess overland flow mechanisms become dominant during high-intensity 
storm events, engaging a larger fraction of the watershed in runoff generation than during low-intensity events. 
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The correlation between Observed Flow x Simulated Flow is notably significant (r = 0.899, p < 0.001). This statistical 
nuance suggests that the simulation may slightly idealize the rainfall-runoff transformation, potentially 
smoothing out some of the variability in interception loss and preferential flow paths (Bonell, 1993; Campling et 
al., 2002). The convergence of these metrics confirms that the temporal variability of the Baroro River Basin is 
driven by meteorological forcing rather than by internal state changes. 
 
In contrast to the dynamic flux of water, the soil and topographic variables (SWP, BD, TWI) form a tightly coupled 
structural cluster that defines the watershed's physical template. A striking feature of this analysis is the perfect 
linear correlation (r = 1.000, p < 0.001) between SWP and BD. In physical hydrology, SWP is typically a function 
of moisture content and pore structure; however, a perfect correlation of unity strongly implies a structural 
coupling in the dataset’s parameterization. It suggests that within the modeled environment, the energetic state 
of soil moisture (SWP) is fundamentally determined by the soil’s physical compaction (BD). This density-potential 
lock indicates that as soil compaction increases, which reduces pore space, the matric forces governing water 
retention scale linearly (Goldberg-Yehuda et al., 2024). This finding highlights the critical role of soil structure in 
defining the watershed's storage capacity, as variations in bulk density are not merely physical attributes but 
direct proxies for the hydrological energy baseline of the soil matrix (Liu et al., 2024). 
 
Extending this structural analysis to the landscape scale, both SWP and BD exhibit strong positive correlations 
with the TWI, with coefficients of (r = 0.710 and r = 0.713), respectively. The TWI is a geomorphic metric that 
identifies areas prone to saturation (typically valley bottoms and convergent slopes). A positive correlation here 
indicates that as one moves towards these convergent, wetter zones, the BD and SWP values also tend to increase 
(Sørensen et al., 2006; Mousavi et al., 2022). This statistical alignment mirrors the geomorphic processes of erosion 
and deposition discussed in previous sections. In many watersheds, high-elevation slopes are characterized by 
coarser, well-drained, and often organic-rich soils with lower bulk density. Conversely, lowland valleys and 
depositional fans accumulate fine sediments, silts, and mineralized alluvium that naturally pack at higher 
densities. The data confirm this catena sequence. The wetness scars and alluvial fans identified in the spatial 
analysis are not only topographic depressions but also zones of distinct pedological densification (Abate & Kibret, 
2016; Aweto & Enaruvbe, 2010). This downstream increase in BD x TWI (r = 0.713) suggests that the capacity of 
the Baroro River Basin to retain moisture is physically reinforced by the tighter soil structure found in its 
depositional zones. Thus, wet areas of the Baroro are not defined solely by slope convergence but also by a 
concurrent shift in soil texture and density that physically favors water retention (Souza & Almedia, 2025).  
 
A critical observation from the pairwise matrix is the near-zero correlation between the hydro-meteorological 
group and the pedo-topographic cluster. For instance, precipitation shows negligible correlation with BD (r = -
0.011) and TWI (r = -0.007). This statistical decoupling is expected and validates the independence of such terrain 
dimensions. Rainfall and flow (both observed and simulated) are dynamic, time-variant fluxes that vary hourly 
or daily. In contrast, BD and TWI are static or quasi-static spatial properties that remain constant over the 
simulation period (Addor et al., 2017). The absence of correlation suggests that the state of the Baroro River Basin’s 
pedo-topographic characteristics does not fluctuate in direct synchrony with the forcing of precipitation events. 
Instead, the soil and topography serve as the fixed stage on which the dynamic play of rainfall and runoff unfolds. 
Although they do not correlate temporally, their influence is implicit: the strong correlation between rainfall and 
flow is moderated by these static parameters (Wagener et al., 2007).  
 
Diagnostic Checks  
The long-term simulation demonstrated exceptional model performance, achieving an NSE of 0.99. This 
significantly exceeds the threshold for 'good' performance (>0.65), indicating that the model captures over 98% of 
observed flow variability. In contrast to the calibration phase (NSE = 0.39), the long-term simulation benefited 
from averaged realizations, which effectively smoothed parameter uncertainties. Similarly, KGE improved from 
0.67 during calibration to 0.919 in the long-term analysis. This high KGE reflects a linear correlation, near-unity 
variability, and minimal bias, suggesting effective parameterization over extended horizons where soil moisture 
carryover and land-use effects stabilize. 
 
PBIAS shifted from a +9.8% overestimation during calibration to -4.5% in the long-term simulation. This value 
falls within the 'good' range (<10%), with the slight underestimation likely attributable to conservative runoff 
generation in the forested areas of the 19,364 ha watershed. Absolute error metrics further corroborated this 
stability; the RMSE  of 12.82 mm and MAE of 9.88 mm were minimal relative to peak flows (~500 mm). The RMSE, 
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in particular, was less than half the calibration value (29.43 mm), confirming reduced volatility and satisfying 
SWAT guidelines for monthly simulations (Moriasi, 2007; Arnold et al., 2012).  
 

Table 7. Diagnostic Checks on SWAT Hydrological Simulation 
Pedo-Topographic Variable Long-Term Calibrated 

Nash-Sutcliffe Efficiency (NSE) 
Kling-Gupta Efficiency (KGE) 

Percent Bias (PBIAS) 
Mean Absolute Error (MAE) 

Root Mean Square Error (RMSE) 

0.99 
0.92 

-4.50% 
9.88 

12.82 

0.39 
0.67 

9.80% 
23.08 
29.43 

 
 

Table 8. Diagnostic Checks on Pedo-Topographic Variables Under a Geometric Brownian Motion 
Pedo-Topographic Variable           Theoretical 𝜎 Estimated  𝜎 Empirical Standard Deviation Normality p-value 

SWP 
BD 

TWI 

                 0.09 
                 0.08 
                 0.36 

0.08 
0.08 
0.33 

< .001 
< .001 
 0.019 

0.981 
0.970 
0.957 

 
The fundamental distributional assumptions of the Geometric Brownian Motion process were verified using 
normality tests on the log-returns of the simulated paths. The lag-1 autocorrelation was observed to be effectively 
at zero, demonstrating model consistency. The resulting p-values for all variables were high: 0.981 for SWP, 0.970 
for BD, and 0.957 for TWI, which satisfy the normality condition under the Kolmogorov-Smirnov test. This 
statistical evidence fails to reject the null hypothesis, thereby confirming that the simulated temporal evolution of 
these landscape features follows a log-normal distribution. The extremely low empirical standard deviations 
indicate that the generated shocks ensured that the long-term simulation reflected realistic landscape resilience 
rather than chaotic variance. 
 
Conclusion  
The research synthesis confirms that the Baroro River Basin is not merely a passive channel for water transport 
but a dynamic, heterogeneous system defined by distinct feedback loops between its geomorphology and its 
inhabitants. The SWAT+ delineation and subsequent statistical analysis have exposed a fundamental decoupling 
between the basin’s dynamic meteorological inputs and its static physical architecture. 
 
A pivotal finding of this study is the identification of the structural lock between SWP, SBD, and TWI. The strong 
statistical association (r = 2) between SWP and BD indicates that the watershed's capacity to regulate water is 
intrinsically linked to land-surface modification. The simulation data (1963–2063) provide a stark counter-
narrative to current urbanization trends; it models a restoration scenario in which bulk density decreases to 0.4 
g/cm³, mimicking a return to forest cover. This contrasts sharply with the reality of urban sprawl in San Juan and 
San Gabriel, which drives soil compaction and increases impervious surface area. 
 
The discovery of the San Juan Wetness Scar, a 2–3 km zone of high TWI and sediment accumulation, redefines the 
understanding of the basin’s agricultural resilience. This alluvial fan acts as a hydrological capacitor, subsidized 
by upstream erosion to maintain the moisture and nutrient levels necessary for the persistence of riverine farm 
plots. However, this resilience is fragile. The decline in rice and corn yields, despite stable habitat quality, suggests 
that the trade-offs between bioproduction and ecosystem services are becoming unsustainable. In conclusion, the 
Baroro River Basin is a system with high hydraulic connectivity but diminishing regulatory capacity. The historic 
conversion of forest lands to agriculture has fragmented the landscape, stripping away the sponge effect needed 
to buffer the region's high-intensity rainfall. Without intervention, the trajectory points toward increased flash 
flood risks, loss of carbon storage, and the destabilization of the food-water nexus. 
 
To bridge the divergence between the simulated restorative potential and the prevailing reality of watershed 
degradation, a multi-phased management framework is proposed. In the immediate term (0–3 years), priority 
must be placed on safeguarding the San Juan Anomaly, a critical zone of hydrological storage and alluvial 
deposition. To prevent the permanent loss of this natural drainage feature to urbanization, municipal 
Comprehensive Land Use Plans (CLUPs) should strictly zone these high-wetness areas for sustainable agriculture 
rather than built-up infrastructure. Concurrently, the strong statistical correlation between rainfall and discharge 
(r = 0.901) underscores the vulnerability to flash flooding and necessitates deploying a community-based hydro-
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meteorological network. Installing cost-effective precipitation and stream sensors in the headwaters of Bagulin 
and San Gabriel is essential for feeding real-time data into a localized Early Warning System (EWS) for 
downstream communities. Furthermore, to mitigate erosion that drives downstream soil densification, 
agricultural extension programs should aggressively promote contour farming and cover cropping in transitional 
mid-slope zones. 
 
Over the longer term, restoration strategies must pivot from superficial planting metrics to deep pedological 
rehabilitation. Reforestation efforts in the Cordillera foothills should prioritize native species that enhance soil 
porosity, with the explicit goal of lowering BD to the simulated target of <1.0 to restore infiltration and carbon 
storage capacity. To sustain these ecological services, a Payment for Ecosystem Services (PES) mechanism should 
be implemented, allowing downstream beneficiaries in San Fernando City and San Juan to compensate upstream 
stewards financially for forest maintenance—a strategy aligned with local livelihood needs (Ramirez et al., 2022). 
Effective governance requires transcending administrative borders by establishing a transboundary Baroro River 
Basin Management Council. This body should utilize the established SWAT+ and GIS baselines to guide policy, 
enforce limits on forest fragmentation, and manage the six municipalities as a single, functional hydro-ecological 
unit. 
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