Reevaluation of Design Flood Discharge under Climate Change: Future Peak Flow Projection in the Johor River Watershed, Malaysia
DOI:
https://doi.org/10.69569/jip.2025.688Keywords:
Climate change, Hydrological frequency analysis, IDF relationship, CDF mapping, Johor River BasinAbstract
This study aims to develop the intensity-duration-frequency (IDF) relationships for the historical (1979-2003) and future (2075-2099) scenarios, and to evaluate changes in estimated design flood values and return periods in the Johor River Basin, Malaysia. The hydrological frequency analysis, using historical and future rainfall scenarios, was then conducted to estimate changes in design flood values (peak flows). The Hydrological Simulation Program-FORTRAN was used for runoff simulations. The changes in the return periods of the estimated flood values were assessed using the cumulative distribution function mapping method. As an example of the results under the future scenario, a design flood value with a 5-day rainfall duration will become 992.1 m3/s (i.e., an increase of 58.1% compared to the historical scenario) based on the future IDF relationship. The return period for this value is 282.8 years based on the historical IDF relationship. This means that the current planning scale, e.g., the 100-year return period commonly used in Malaysia, might not be adequate and should be extended to prevent and/or mitigate the damage from devastating floods under climate change.
Downloads
References
Abdulla, F., Eshtawi, T., & Assaf, H. (2009). Assessment of the impact of potential climate change on the water balance of a semi-arid watershed. Water Resources Management, 23, 2051–2068.
Abdullah, J., & Julien, P. Y. (2014). Distributed flood simulations on a small tropical watershed with the TREX model. Journal of Flood Engineering, 5(1–2), 17–37.
Abdullah, J., Muhammad, N. S., Julien, P. Y., Ariffin, J., & Shafie, A. (2016). Flood flow simulations and return period calculation for the Kota Tinggi Watershed, Malaysia. Journal of Flood Risk Management. https://doi.org/10.1111/jfr3.12256
Akter, A., & Babel, B. S. (2012). Hydrological modeling of the Mun River basin in Thailand. Journal of Hydrology, 452–453, 232–246.
Albek, M., Ogutveren, U., & Albek, E. (2004). Hydrological modeling of Seydi Suyu Watershed (Turkey) with HSPF. Journal of Hydrology, 285, 260–271.
Champathong, A., Komori, D., Kiguchi, M., Sukhapunnaphan, T., Oki, T., & Nakaegawa, T. (2013). Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrological Research Letters, 7(2), 36–41. https://doi.org/10.3178/hrl.7.36
Chan, N. W. (1995). Flood disaster management in Malaysia: An evaluation of the effectiveness of government resettlement schemes. Disaster Prevention and Management: An International Journal, 4(4), 22–29.
Department of Irrigation and Drainage Malaysia. (2009). DID manual (Vol. 1, p. 5A-1).
Hayashi, S., Murakami, S., Watanabe, M., & Bao-Hua, X. (2004). HSPF simulation of runoff and sediment loads in the Upper Changjiang River Basin, China. Journal of Environmental Engineering, 130(7), 801–815.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821.
Hunukumbura, P. B., & Tachikawa, Y. (2012). River discharge projection under climate change in the Chao Phraya River Basin, Thailand, using the MRI-GCM3.1S dataset. Journal of the Meteorological Society of Japan, Series II, 90A(0), 137–150. https://doi.org/10.2151/jmsj.2012-a07
Julien, P. Y., Abdullah, J., & Muhammad, N. S. (2015). Keynote: Analysis of extreme floods in Malaysia. In ISFRAM 2014 Proceedings of the International Symposium on Flood Research and Management (pp. 1–16).
Kim, S., Tachikawa, Y., Nakakita, E., & Takara, K. (2009). Climate change impact on water resources management in the Tone River Basin, Japan. Annuals of Disaster Prevention Research Institute, Kyoto University, 52B, 587–606.
Kim, S., Nakakita, E., Tachikawa, Y., & Takara, K. (2010a). Precipitation change in Japan under the A1B climate change scenario. Annual Journal of Hydraulic Engineering, Japan Society of Civil Engineers, 54, 127–132.
Kim, S., Tachikawa, Y., Nakakita, E., & Takara, K. (2010b). Hydrologic evaluation on the AGCM20 output using observed river discharge data. Hydrological Research Letters, 4, 35–39.
Kitoh, A., Ose, T., & Takayabu, I. (2016). Dynamical downscaling for climate projection with high-resolution MRI AGCM-RCM. Journal of the Meteorological Society of Japan, 94A, 1–16. https://doi.org/10.2151/jmsj.2015-022
Kure, S., & Tebakari, T. (2012). Hydrological impact of regional climate change in the Chao Phraya River Basin, Thailand. Hydrological Research Letters, 6, 53–58. https://doi.org/10.3178/hrl.6.53
Liu, Z., & Tong, S. T. Y. (2011). Using HSPF to model the hydrologic and water quality impacts of riparian land-use change in a small watershed. Journal of Environmental Informatics, 17(1), 1–14.
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514–517.
Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–350. https://doi.org/10.1038/nature04312
Mizuki, C., & Kuzuha, Y. (2023). Frequency analysis of hydrological data for urban floods—Review of traditional methods and recent developments, especially an introduction of Japanese proper methods. Water, 15(13), 2490. https://doi.org/10.3390/w15132490
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., & Kitoh, A. (2012). Climate simulations using MRI-AGCM3.2 with 20-km grid. Journal of the Meteorological Society of Japan, 90A, 233–258.
MSMA. (2000). Urban stormwater management manual for Malaysia (Vol. 4, Chapter 3). Department of Irrigation and Drainage.
MSMA. (2012). Urban stormwater management manual for Malaysia. Department of Irrigation and Drainage.
Muhammad, N. S., Julien, P. Y., & Jose, D. S. (2015). Probability structure and return period of multi-day monsoon rainfall. Journal of Hydrologic Engineering, ASCE, 20(11), 04015048-1–04015048-11.
Muhammad, N. S., & Julien, P. Y. (2015). Multiday rainfall simulations for Malaysian monsoons. In ISFRAM 2014 Proceedings of the International Symposium on Flood Research and Management (pp. 111–120).
Müller, O. V., McGuire, P. C., Vidale, P. L., & Hawkins, E. (2024). River flow in the near future: A global perspective in the context of a high-emission climate change scenario. Hydrology and Earth System Sciences, 28(10), 2179–2201. https://doi.org/10.5194/hess-28-2179-2024
Muzamil, S. A. H. B. S., Zainun, N. Y., Ajman, N. N., Sulaiman, N., Khahro, S. H., Rohani, M. Md., Mohd, S. M. B., & Ahmad, H. (2022). Proposed framework for the flood disaster management cycle in Malaysia. Sustainability, 14(7), 4088. https://doi.org/10.3390/su14074088
Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M., & Galelli, S. (2020). Coherent streamflow variability in Monsoon Asia over the past eight centuries—Links to oceanic drivers. Water Resources Research, 56(12). https://doi.org/10.1029/2020wr027883
Rathore, P. (2014). Error analysis of TRMM, WFD, and APHRODITE datasets using triple collocation [Bachelor's thesis, Delft University of Technology].
Razi, M. A. M., Ariffin, J., Tahir, W., & Arish, N. A. M. (2010). Flood estimation studies using hydrologic modeling system (HEC-HMS) Johor River, Malaysia. Journal of Applied Sciences, 10(11), 930–939.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, G., & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33–57.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., ... Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1057. https://doi.org/10.1175/2010BAMS3001.1
Shrestha, S., Bae, D.-H., Hok, P., Ghimire, S., & Pokhrel, Y. (2021). Future hydrology and hydrological extremes under climate change in Asian river basins. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-96656-2
Singla, S., Haldar, R., Khosa, R., Singla, R., & Rajeev, R. (2014). Frequency analysis of annual one day to five consecutive days maximum rainfall for Gandak River Basin. International Journal of Engineering and Technology, 3(2), 93–98.
Suhaila, J., & Jemain, A. A. (2007). Fitting daily rainfall amount in Malaysia using the normal transform distribution. Journal of Applied Sciences, 7(14), 1880–1886.
UNESCO. (1997). Catalogue of rivers for Southeast Asia and the Pacific. Malaysia-2: Sungai Johor (p. 214).
U.S. Environmental Protection Agency. (2001). HSPF version 12 user’s manual.
Yasutomi, N., Hamada, A., & Yatagai, A. (2011). Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environment Research, 15, 165–172.
Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., & Hamada, A. (2009). A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137–140. https://doi.org/10.2151/sola.2009-035
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., & Kitoh, A. (2012). APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93, 1401–1415.
Yatagai, A., Krishnamurti, T. N., Kumar, V., Mishra, A. K., & Simon, A. (2014). Use of APHRODITE rain gauge–based precipitation and TRMM 3B43 products for improving Asian monsoon seasonal precipitation forecasts by the superensemble method. Journal of Climate, 27, 1062–1069.
Yazawa, T. (2017). Design Flood Criteria toward integrated watershed management in the Johor River Watershed, Malaysia [Ph.D. dissertation]. Kyoto University. https://doi.org/10.14989/doctor.k20352
Yazawa, T., Kim, S., Sato, K., & Shimizu, Y. (2019a). Future Changes in watershed-scale rainfall characteristics: Application of AGCM20 to the Johor River Watershed, Malaysia, Journal of EICA, 23(4), 44–51.
Yazawa, T., Kim, S., Sato, K., & Shimizu, Y. (2019b). Estimation of design flood criteria toward integrated watershed management in the Johor River Watershed, Malaysia. Journal of EICA, 24(2/3), 22–31.
Yazawa, T., & Shoji, A. (2023). Spatial analysis of historical extreme rainfall characteristics using regionalization in the Lake Biwa and Yodo River Basin, Japan. Journal of Water and Climate Change, 14(3), 916–936. https://doi.org/10.2166/wcc.2023.465
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Interdisciplinary Perspectives

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.