Anti-Angiogenesis Effects of Citrus and Flaxseed Extracts in a Chorioallantoic Membrane Assay

Authors

  • Raymund J. Capagas National University – Manila, Metro Manila, Philippines
  • Mary Jobhel Callueng National University – Manila, Metro Manila, Philippines
  • Daschel Alliyah Diega National University – Manila, Metro Manila, Philippines
  • Aaliyah Dominique Gonzales National University – Manila, Metro Manila, Philippines
  • Benedict Isleta National University – Manila, Metro Manila, Philippines
  • Dhana San Agustin National University – Manila, Metro Manila, Philippines

DOI:

https://doi.org/10.69569/jip.2024.0406

Keywords:

Anti-angiogenesis, Citrus aurantium, Duck embryo CAM assay, Linum flavum

Abstract

Both Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) are rich sources of bioactive compounds with potential health benefits, including anti-cancer properties. This study assessed and compared the overall anti-angiogenesis activity of Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed). Specifically, this study aimed to determine the minimum concentration of both Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) that exhibits anti-angiogenesis activity. It also aimed to determine the most potent concentration that is effective as an anti-angiogenesis agent. This study investigated the anti-angiogenic activity of Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) ethanolic extract using the fertilized duck embryo chorioallantoic membrane (CAM) assay, a widely accepted method for studying angiogenesis. Several concentrations of Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) ethanolic extracts were applied to the CAM of duck embryos, while control groups received saline and ascorbic acid. Preliminary findings suggest that Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) ethanolic extracts exhibit anti-angiogenesis activity. Further analysis, including quantifying blood vessel density and branching, provided insights into the comparative efficacy of the two extracts. Statistical analysis revealed that the most effective ethanolic concentration for Citrus aurantium (Dalandan) is 10%, while for Linum flavum (Golden Flaxseed) is 30%. The study concluded that Citrus aurantium (Dalandan) has the most effective anti-angiogenic activity compared to Linum flavum (Golden Flaxseed). This study contributes to understanding the potential use of Citrus aurantium (Dalandan) peels and Linum flavum (Golden Flaxseed) for therapeutic applications in cancer treatment through their anti-angiogenic properties. Moreover, this study underscores the importance of utilizing alternative models, such as the CAM assay, for rapid and cost-effective screening of anti-angiogenic agents.

Downloads

Download data is not yet available.

References

Alfieri, M., Mascheretti, I., Dougué Kentsop, R.A., Consonni, R., Locatelli, F., Mattana, M., Ottolina, G. (2021). Enhanced Aryltetralin Lignans Production in Linum Adventi-Tious Root Cultures. Molecules; 26(17), 5189. https://doi.org/10.3390/molecules26175189

Al-Ostoot, F.H., Salah, S., Khamees, H.A., & Khanum, S.A. (2021). Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treatment and Research Communications, 28, 100422. https://doi.org/10.1016/j.ctarc.2021.100422

Anglo-Ojeda, A. B., Flores, A. B., & Recto, A. L. a. V. (2022). Comparative Evaluation of the Anti-Angiogenic Properties of Vitamin B Complex and Ascorbic Acid using Duck Embryo Chorioallantoic Membrane (CAM) Assay. International Multidisciplinary Research Journal, 4(2), 175 181. https://doi.org/10.54476/8028643

Arroy, J.D.V., Ruiz-Espinosa, H., Luna-Guevara, J.J., Luna-Guevara, M.L., Hernández-Carranza, P., Ávila-Sosa, R., & Ochoa-Velasco, C. E. (2017). Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences, 35(5), 456–465. https://doi.org/10.17221/316/2016-cjfs

Baker, D.H.A., Ibrahim, E.A., & Salama, Z.A.E. (2021). Citrus Peels as a Source of Bioactive Compounds with Industrial and Therapeutic Applications. IntechOpen.

Barluado, M. J. G., Lagang, M. J. M., Gordonas, I. F. M., & Bosas, C. D. B. (2016). Antiangiogenic and antioxidant properties of Calamansi Citrus microcarpa peel ethanolic extract. UIC Research Journal, 19(2). https://doi.org/10.17158/521

Benayad, O., Bouhrim, M., Tiji, S., Kharchoufa, L., Addi, M., Drouet, S., Hano, C., Lorenzo, J. M., Bendaha, H., Bnouham, M., & Mimouni, M. (2021). Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules, 11(11), 1555. https://doi.org/10.3390/biom11111555

Bevans, R. (2020). Multiple Linear Regression | A Quick Guide (Examples). Retrieved from https://tinyurl.com/348wzvvw

Camacho, A.J. (2018). Phytochemical Screening of Dalandan (SN: Citrus aurantium; FN: Rutaceae) Peel Ethanolic Extract and Evaluation of the Formulated Tea As A Potential Antioxidant and Source of Ascorbic Acid (Thesis). College of Allied Health Studies, Center of Pharmacy, Philippines.

Dhara, M., Adhikari, L., & Majumder, R. (2018). Chorioallantoic Membrane (CAM) Assay of Different Extracts of Rhizome and Inflorescence of Heliconia rostrata. Indian Journal of Pharmaceutical Education and Research, 52(4s), S246–S251. https://doi.org/10.5530/ijper.52.4s.104

Divya, P. J., Jamuna, P., & Jyothi, L. A. (2016). Antioxidant properties of fresh and processed Citrus aurantium fruit. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1184119

Fischer, D., Fluegen, G., Garcia, P., Ghaffari-Tabrizi-Wizsy, N., Gribaldo, L., Huang, R. Y., Rasche, V., Ribatti, D., Rousset, X., Pinto, M. T., Viallet, J., Wang, Y., & Schneider-Stock, R. (2022). The CAM Model—Q&A with Experts. Cancers, 15(1), 191. https://doi.org/10.3390/cancers15010191

Hoseinkhani, Z., Norooznezhad, F., Rastegari-Pouyani, M., & Mansouri, K. (2020). Medicinal Plants Extracts with Antiangiogenic Activity: Where Is the Link? Advanced Pharmaceutical Bulletin, 10(3), 370–378. https://doi.org/10.34172/apb.2020.045

Huang, J., He, W., Yan, C., Du, X., & Shi, X. (2017). Microwave assisted extraction of flavonoids from pomegranate peel and its antioxidant activity. BIO Web of Conferences, 8, 03008. https://doi.org/10.1051/bioconf/20170803008

Jang, W. Y., Kim, M., & Cho, J. Y. (2022). Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. International Journal of Molecular Sciences, 23(24), 15482. https://doi.org/10.3390/ijms232415482

Kundeková, B., Máčajová, M., Meta, M., Čavarga, I., & Bilčík, B. (2021). Chorioallantoic Membrane Models of Various Avian Species: Differences and Applications. Biology, 10(4), 301. https://doi.org/10.3390/biology10040301

Karthikeyan, V. (2014). Citrus aurantium (Bitter Orange): A Review of its Traditional Uses, Phytochemistry and Pharmacology. International Journal of Drug Discover and Herbal Research, 4(4), 766-722. http://www.ijddhrjournal.com

Khan, M. I., Bouyahya, A., Hachlafi, N. E. L., Menyiy, N. E., Akram, M., Sultana, S., Zengin, G., Ponomareva, L., Shariati, M. A., Ojo, O. A., Dall’Acqua, S., & Elebiyo, T. C. (2022). Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. Environmental Science and Pollution Research, 29(17), 24411–24444. https://doi.org/10.1007/s11356-021-17795-7

Kumar, G. S., Nagaraju, R., Swarajyalakshmi, K., Latha, P., & Balakrishna, M. (2017). Standardization Of Drying Techniques For Different Fruit Peel For Making Potpourris. Retrieved from https://tinyurl.com/4k6u6sz3

Liu, S., Lou, Y., Li, Y., Zhang, J., Li, P., Yang, B., & Gu, Q. (2022). Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Frontiers in Nutrition, 9, 968604. https://doi.org/10.3389/fnut.2022.968604

Liu, X., Liu, Y., Shan, C., Yang, X., Zhang, Q., Xu, N., Xu, L., & Song, W. (2022). Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chemistry X, 14, 100287. https://doi.org/10.1016/j.fochx.2022.100287

Lugano, R., Ramachandran, M., & Dimberg, A. (2019). Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770. https://doi.org/10.1007/s00018-019-03351-7

Maksoud, S., Abdel-Massih, R. M., Rajha, H. N., Louka, N., Chemat, F., Barba, F. J., & Debs, E. (2021). Citrus aurantium L. Active Constituents, Biological Effects and Extraction Methods. An Updated Review. Molecules, 26(19), 5832. https://doi.org/10.3390/molecules26195832

Maqbul, M. S., Sarhan, R. N., Alzubaidi, F. a. S., Hejji, A. T., Alzubaidi, M. a. S., Baqi, I. K. A., Yousuf, S. Y. W., Garout, R. M., Alhasawi, N. A., Aljohani, W. A., Aladwani, R. M., Alaali, T. M., Yaghmour, A. T., & Hanbzazah, A. M. (2022). The antimicrobial vulnerability testing of Linum flavum hydrocolloids against pediatric surgical MRSA isolates with qualitative bio-phytochemical analysis quantified by GC-MS-UV-Vis spectrophotometry. Medical Science, 26(130), 1–8. https://doi.org/10.54905/disssi/v26i130/ms571e2688

Mikac, S., Markulin, L., Drouet, S., Corbin, C., Tungmunnithum, D., Kiani, R., Kabra, A., Abbasi, B. H., Renouard, S., Bhambra, A., Lainé, E., Arroo, R. R. J., Fuss, E., & Hano, C. (2020). Bioproduction of anticancer podophyllotoxin and related aryltretralin-lignans in hairy root cultures of linum flavum l. In K. G. Ramawat, H. M. Ekiert, & S. Goyal (Eds.), Plant Cell and Tissue Differentiation and Secondary Metabolites (pp. 1–38). Springer International Publishing. https://doi.org/10.1007/978-3-030-11253-0_20-1

Motyka, S., Jafernik, K., Ekiert, H., Sharifi-Rad, J., Calina, D., Al-Omari, B., Szopa, A., & Cho, W. C. (2023). Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomedicine & Pharmacotherapy, 158, 114145. https://doi.org/10.1016/j.biopha.2022.114145

Mukhija, M., Joshi, B. C., Bairy, P. S., Bhargava, A., & Sah, A. N. (2022). Lignans: a versatile source of anticancer drugs. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 76. https://doi.org/10.1186/s43088-022-00256-6

Murador, D. C., Salafia, F., Zoccali, M., Martins, P. L. G., Ferreira, A. G., Dugo, P., Mondello, L., De Rosso, V. V., & Giuffrida, D. (2019). Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants, 8(12), 613. https://doi.org/10.3390/antiox8120613

Musazadeh, V., Jafarzadeh, J., Keramati, M., Zarezadeh, M., Ahmadi, M., Farrokhian, Z., & Ostadrahimi, A. (2021). Flaxseed oil supplementation augments antioxidant capacity and alleviates oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Evidence-Based Complementary and Alternative Medicine, 2021, 1–9. https://doi.org/10.1155/2021/4438613

Raju, N. S. C., & Yi̇Ng, T. S. (2023). Anti-Angiogenesis Screening of Moringa oleifera Pod Extracts by In-Ovo Chorioallantoic Membrane (CAM) Assay. Hacettepe University Journal of the Faculty of Pharmacy, 43(4), 301-309. https://doi.org/10.52794/hujpharm.1192921

Ribatti, D. (2022). Vasculogenesis. In Elsevier eBooks (pp. 9–17). https://doi.org/10.1016/b978-0-323-90599-2.00002-7

Schroeder, A. B., Dobson, E. T. A., Rueden, C. T., Tomancak, P., Jug, F., & Eliceiri, K. W. (2020). The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis. Protein Science, 30(1), 234–249. https://doi.org/10.1002/pro.3993

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Subbaraj, G. K., Kumar, Y. S., & Kulanthaivel, L. (2021). Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. The Egyptian Journal of Internal Medicine, 33(1). https://doi.org/10.1186/s43162-021-00056-x

Tang, Z., Ying, R., Lv, B., Yang, L., Xu, Z., Yan, L., Bu, J., & Wei, Y. (2021). Flaxseed oil: Extraction, health benefits and products. Quality Assurance and Safety of Crops & Foods, 13(1), 1–19. https://doi.org/10.15586/qas.v13i1.783

Tecon, S. F. (2015). Angiosuppressive Potential of Manihot Esculenta Crantz Leaves Ethanolic Extract Using Chorioallantoic Membrane Assay in Duck Embryos. Cognoscere: SPUQC Student Research Journal, 10(2). https://ejournals.ph/article.php?id=10379

Teleanu, R. I., Chircov, C., Grumezescu, A. M., & Teleanu, D. M. (2019). Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. Journal of Clinical Medicine, 9(1), 84. https://doi.org/10.3390/jcm9010084

Zaim, I. N. R., Wahab, M., Ismail, H. F., Othman, N., Hara, H., & Akhir, F. N. M. (2023). Extraction and determination of flavonoid compounds in citrus fruit waste. IOP Conference Series Earth and Environmental Science, 1144(1), 012005. https://doi.org/10.1088/1755-1315/1144/1/012005

Downloads

Published

2024-10-06

How to Cite

Capagas, R., Callueng, M. J., Diega, D. A., Gonzales, A. D., Isleta, B., & San Agustin, D. (2024). Anti-Angiogenesis Effects of Citrus and Flaxseed Extracts in a Chorioallantoic Membrane Assay. Journal of Interdisciplinary Perspectives, 2(11), 234–245. https://doi.org/10.69569/jip.2024.0406