The Anatomy of Uncertain Terrains: Soil Topography Characterization and Discharge Analysis of the Baroro River Basin, Northern Philippines

Authors

  • Jericho A. Trio University of the Philippines Los Baños, Laguna, Philippines
  • Patricia Mae M. Clariño University of the Philippines Los Baños, Laguna, Philippines
  • Chris C. Guevarra University of the Philippines Los Baños, Laguna, Philippines

Keywords:

Baroro River Basin, River pedology, River remote sensing, Soil taxonomy, Topographic wetness

Abstract

The Baroro River Basin in Northern Luzon is a critical hydrological feature providing irrigation and biodiversity services. However, the watershed faces severe vulnerabilities due to the interplay between high-discharge hydrological behaviors and anthropogenic pressures, specifically rapid Land Use and Land Cover (LULC) changes that fragment forest blocks and compromise soil stability. While socio-ecological baselines and local perceptions of degradation are well documented, there remains a lack of integrated quantitative modeling of the pedological and lotic processes on which human settlements depend. Existing studies do not adequately account for the physical feedback loops among soil properties, river discharge, and landscape fragmentation. This study used the Soil and Water Assessment Tool+ (SWAT+) in QGIS to simulate hydro-pedological trajectories from 1963 to 2063. The methodology integrated remote sensing with descriptive statistics to correlate variables such as Topographic Wetness Index (TWI), Soil Bulk Density (BD), and Soil Water Potential (SWP) against historical rainfall data. The analysis revealed the San Juan Anomaly, a 2–3 km zone of amplified TWI and sediment accumulation acting as a vital hydrological capacitor for riverine agriculture. Statistical modeling showed a decoupling between precipitation and discharge, with high upstream porosity (BD ≈ 0.69 g/cm³) buffering storm runoff. However, a sharp divergence exists between the simulated restorative potential forest recovery and the observed reality of downstream urban compaction and soil densification. The basin demands a management paradigm that treats it as a single functional unit. Immediate policy interventions must zone the San Juan alluvial scar for sustainable agriculture to prevent infrastructure encroachment. Long-term strategies should prioritize deep pedological rehabilitation through upstream reforestation to reduce bulk density, thereby restoring carbon storage and flood-mitigation capacity.

Downloads

Download data is not yet available.

References

Abancó, C., Bennett, G., Matthews, A., Matera, M.A., & Tan, F. (2021). The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 21(5), 1531–1550. https://doi.org/10.5194/nhess-21-1531-2021

Abate, N., & Kibret, K. (2016). Effects of land use, soil depth and topography on soil physicochemical properties along the toposequence at the Wadla Delanta Massif, Northcentral Highlands of Ethiopia. Environment and Pollution, 5(2), 57. https://doi.org/10.5539/ep.v5n2p57

Addor, N., Newman, A., Mizukami, N., & Clark, M. (2017). The CAMELS data set: Catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences, 21(10), 5293–5313. https://doi.org/10.5194/hess-21-5293-2017

Allen, E. (2007). Modeling with Itô Stochastic Differential Equations. Dordrecht: Springer Netherlands.

Almarines, N., Hashimoto, S., Pulhin, J., Predo., C., Pulhin, F., Magpantay, A., & Saito, O. (2024). Spatiotemporal dynamics of bioproduction systems and ecosystem services in the Baroro and Pagsanjan-Lumban watersheds, Philippines. Paddy and Water Environment, 23(2), 277–300. https://doi.org/10.1007/s10333-024-01015-2

Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A., & Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799. https://doi.org/10.1016/j.jenvman.2022.116799

Arkhangelskaya, T., & Lukyashchenko, K. (2018). Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosystems Engineering, 168, 83–95. https://doi.org/10.1016/j.biosystemseng.2017.06.011

Armstrong, D., Parker, G., & Richards, T. (2008). Characteristics and classification of least altered streamflows in Massachusetts. Scientific Investigations Report. https://doi.org/10.3133/sir20075291

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., & Jha, M.K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

Aweto, A., & Enaruvbe, G. (2010). Catenary variation of soil properties under oil palm plantation in South Western Nigeria. Ethiopian Journal of Environmental Studies and Management, 3(1). https://doi.org/10.4314/ejesm.v3i1.54389

Beven, K.J., & Kirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834

Bonell, M. (1993). Progress in the understanding of runoff generation dynamics in forests. Journal of Hydrology, 150(2–4), 217–275. https://doi.org/10.1016/0022-1694(93)90112-m

Box, G.E., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons.

Bressloff, P. (2024). Generalized Itô’s lemma and the stochastic thermodynamics of diffusion with resetting. Journal of Physics A: Mathematical and Theoretical, 57(44), 445003. https://doi.org/10.1088/1751-8121/ad8495

Campling, P., Gobin, A., Beven, K., & Feyen, J. (2002). Rainfall‐runoff modelling of a humid tropical catchment: The TOPMODEL approach. Hydrological Processes, 16(2), 231–253. Portico. https://doi.org/10.1002/hyp.341

Chawanda, C.J., George, C., Thiery, W., van Griensven, A., Tech, J., Arnold, J., & Srinivasan, R. (2020). User-friendly workflows for catchment modelling: Towards reproducible SWAT+ model studies. Environmental Modelling & Software, 134, 104812. https://doi.org/10.1016/j.envsoft.2020.104812

Crow, W., Berg, A., Cosh, M., Loew, A., Mohanty, B., Panciera, R., de Rosnay, P., Ryu, D., & Walker, J. (2012). Upscaling sparse ground‐based soil moisture observations for the validation of coarse‐resolution satellite soil moisture products. Reviews of Geophysics, 50(2). Portico. https://doi.org/10.1029/2011rg000372

Cruz, R.V., Carandang, W.M., Carandang, V.Q., de Luna, C.C., & Galapia, G.A. (2014). Collaborative monitoring system for enhanced watershed management: The case of the Baroro Watershed in La Union, Philippines (CBA2014-03NSY-Cruz). Asia-Pacific Network for Global Change. https://tinyurl.com/bdwkpcjn

De Benedetto, D., Montemurro, F., & Diacono, M. (2019). Mapping an agricultural field experiment by electromagnetic induction and ground penetrating radar to improve soil water content estimation. Agronomy, 9(10), 638. https://doi.org/10.3390/agronomy9100638

de Souza, A.P., & de Almeida, F. T. (2025). The effect of land use and management on soil properties and processes. Soil Systems, 9(2), 54. https://doi.org/10.3390/soilsystems9020054

Di Bene, C., Diacono, M., Montemurro, F., Testani, E., & Farina, R. (2022). EPIC model simulation to assess effective agro-ecological practices for climate change mitigation and adaptation in organic vegetable system. Agronomy for Sustainable Development, 42(1). https://doi.org/10.1007/s13593-021-00745-5

Encisa-Garcia, J., Pulhin, J., Cruz, R.V., Simondac-Peria, A., Ramirez, M.A., & De Luna, C. (2020). Land use/land cover changes assessment and forest fragmentation analysis in the Baroro River Watershed, La Union, Philippines. Journal of Environmental Science and Management, 14. https://doi.org/10.47125/jesam/2020_sp2/02

Ferguson, J.C., Krutz, L.J., Calhoun, J., Gholson, D., Merritt, L., Wesley, M., Jr., Broster, K., & Treadway, Z. (2020). Optimizing overhead irrigation droplet size for six Mississippi soils. Agronomy, 10(4), 574. https://doi.org/10.3390/agronomy10040574

Goldberg-Yehuda, N., Nachshon, U., Assouline, S., & Mau, Y. (2024). The effect of mechanical compaction on the soil water retention curve: Insights from a rapid image analysis of micro-CT scanning. CATENA, 242, 108068. https://doi.org/10.1016/j.catena.2024.108068

Gutmann, E., Pruitt, T., Clark, M., Brekke, L., Arnold, J., Raff, D., & Rasmussen, R. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research, 50(9), 7167–7186. Portico. https://doi.org/10.1002/2014wr015559

Herrera, P.A., Marazuela, M.A., & Hofmann, T. (2021). Parameter estimation and uncertainty analysis in hydrological modeling. WIREs Water, 9(1). Portico. https://doi.org/10.1002/wat2.1569

Hillel, D. (2003). Introduction to environmental soil physics. Elsevier.

Issac, J., & Newell, R. (2025). Integrating stakeholder knowledge through a participatory approach and semi-quantitative analysis for local watershed management. Systems, 13(5), 364. https://doi.org/10.3390/systems13050364

Jencso, K., McGlynn, B., Gooseff, M., Wondzell, S., Bencala, K., & Marshall, L. (2009). Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale. Water Resources Research, 45(4). Portico. https://doi.org/10.1029/2008wr007225

Kovda, I., Goryachkin, S., Lebedeva, M., Chizhikova, N., Kulikov, A., & Badmaev, N. (2017). Vertic soils and Vertisols in cryogenic environments of Southern Siberia, Russia. Geoderma, 288, 184–195. https://doi.org/10.1016/j.geoderma.2016.11.008

Lahoti, S.A., Lomente-Gacutan, L.L., Cruz, R.V., Montoya, P., Magpantay, A., Sevilla, F., Sahle, M., Pulhin, J., Hashimoto, S., & Saito, O. (2025). Localizing visions of desirable futures: Applying the nature futures framework to the Baroro Watershed in the Philippines. Sustainability Science. https://doi.org/10.1007/s11625-025-01688-6

Lal, R. (2015). Restoring Soil quality to mitigate soil degradation. Sustainability, 7(5), 5875–5895. https://doi.org/10.3390/su7055875

Lee, C.-H., Lee, N., & Kim, J.-T. (2021). SWAT model calibration/validation using SWAT-CUP in Danjang-stream watershed. Journal of the Korea Academia-Industrial Cooperation Society, 22(9), 235–246. https://doi.org/10.5762/kais.2021.22.9.235

Lillesand, T., Kiefer, R.W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

Liu, Q., Guo, L., Miao, J., Guo, S., & Shu, J. (2024). Approaches for predicting the soil-water characteristic curves of compacted quartz sand based on particle packing theory. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-73821-x

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706. https://doi.org/10.1016/j.measurement.2022.111706

Nainar, A., Kishimoto, K., Takahashi, K., Gomyo, M., & Kuraji, K. (2021). How do ground litter and canopy regulate surface runoff?—A paired-plot investigation after 80 years of broadleaf forest regeneration. Water, 13(9), 1205. https://doi.org/10.3390/w13091205

Nowak, D., & Greenfield, E. (2018). US urban forest statistics, values, and projections. Journal of Forestry, 116(2), 164–177. https://doi.org/10.1093/jofore/fvx004

Olden, J., & Poff, N.L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2), 101–121. Portico. https://doi.org/10.1002/rra.700

Park, S., Nielsen, A., Bailey, R., Trolle, D., & Bieger, K. (2019). A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environmental Modelling & Software, 111, 493–497. https://doi.org/10.1016/j.envsoft.2018.10.017

Pulhin, F., Magpantay, A., Almarines, N., Predo, C., & Pulhin, J. (2024). Land cover change and carbon loss: A case study of the Pagsanjan-Lumban and Baroro watersheds in Luzon, Philippines. SciEnggJ, 17(Supplement), 268–280. https://doi.org/10.54645/202417suplof-25

Raghuwanshi, N.S., Singh, R., & Reddy, L.S. (2006). Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. Journal of Hydrologic Engineering, 11(1), 71–79. https://doi.org/10.1061/(asce)1084-0699(2006)11:1(71)

Ramirez, M.A., Pulhin, J., Garcia, J., Tapia, M., Pulhin, F., Cruz, R.V., De Luna, C., & Inoue, M. (2019). Landscape fragmentation, ecosystem services, and local knowledge in the Baroro River Watershed, Northern Philippines. Resources, 8(4), 164. https://doi.org/10.3390/resources8040164

Ramirez, M.A., Pulhin, J., & Inoue, M. (2022). Local people’s perceptions of changing ecosystem services in Baroro River Watershed, Philippines. Grassroots Journal of Natural Resources, 05(01), 17–39. https://doi.org/10.33002/nr2581.6853.050102

Reynolds, S., Rohli, R.V., Johnson, J., Waylen, P., & Francek, M.A. (2025). Exploring physical geography (2nd ed.). McGraw-Hill Education.

Sangelantoni, L., Tomassetti, B., Colaiuda, V., Lombardi, A., Verdecchia, M., Ferretti, R., & Redaelli, G. (2019). On the use of original and bias-corrected climate simulations in regional-scale hydrological scenarios in the Mediterranean basin. Atmosphere, 10(12), 799. https://doi.org/10.3390/atmos10120799

Sammel, A., & McMartin, D. (2014). Teaching and knowing beyond the water cycle: What does it mean to be water literate? Creative Education, 05(10), 835–848. https://doi.org/10.4236/ce.2014.510097

Setegn, S., Srinivasan, R., & Dargahi, B. (2008). Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal, 2(1), 49–62. https://doi.org/10.2174/1874378100802010049

Shawul, A.A., Alamirew, T., & Dinka, M.O. (2013). Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. https://doi.org/10.5194/hessd-10-13955-2013

Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006

Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/tr038i006p00913

Tolentino, P.L., Poortinga, A., Kanamaru, H., Keesstra, S., Maroulis, J., David, C.P., & Ritsema, C. (2016). Projected impact of climate change on hydrological regimes in the Philippines. PLOS One, 11(10), e0163941. https://doi.org/10.1371/journal.pone.0163941

Umar, M., Rhoads, B.L., & Greenberg, J. (2018). Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology, 556, 325–338. https://doi.org/10.1016/j.jhydrol.2017.11.026

Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment classification and hydrologic similarity. Geography Compass, 1(4), 901–931. Portico. https://doi.org/10.1111/j.1749-8198.2007.00039.x

Wohl, E. (2014). Rivers in the landscape: Science and management. Wiley-Blackwell.

Downloads

Published

2026-02-12

How to Cite

Trio, J., Clariño, P. M., & Guevarra, C. (2026). The Anatomy of Uncertain Terrains: Soil Topography Characterization and Discharge Analysis of the Baroro River Basin, Northern Philippines. Journal of Interdisciplinary Perspectives, 4(3), 132–151. Retrieved from https://jippublication.com/index.php/jip/article/view/2331